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Abstract
Most modern malware download attacks occur via the
browser, typically due to social engineering and drive-
by downloads. In this paper, we study the “origin” of
malware download attacks experienced by real network
users, with the objective of improving malware down-
load defenses. Specifically, we study the web paths fol-
lowed by users who eventually fall victim to different
types of malware downloads. To this end, we propose a
novel incident investigation system, named WebWitness.
Our system targets two main goals: 1) automatically
trace back and label the sequence of events (e.g., visited
web pages) preceding malware downloads, to highlight
how users reach attack pages on the web; and 2) leverage
these automatically labeled in-the-wild malware down-
load paths to better understand current attack trends, and
to develop more effective defenses.

We deployed WebWitness on a large academic net-
work for a period of ten months, where we collected and
categorized thousands of live malicious download paths.
An analysis of this labeled data allowed us to design a
new defense against drive-by downloads that rely on in-
jecting malicious content into (hacked) legitimate web
pages. For example, we show that by leveraging the inci-
dent investigation information output by WebWitness we
can decrease the infection rate for this type of drive-by
downloads by almost six times, on average, compared to
existing URL blacklisting approaches.

1 Introduction
Remote malware downloads currently represent the most
common infection vector. In particular, the vast majority
of malware downloads occur via the browser, typically
due to social engineering attacks and drive-by down-
loads. A large body of work exists on detecting drive-
by downloads (e.g., [10, 11, 19, 23, 33, 40]), and a few
efforts have been dedicated to studying social engineer-
ing attacks [6, 31, 37]. However, very little attention has

been dedicated to investigating and categorizing the web
browsing paths followed by users before they reach the
web pages from which the attacks start to unfold.
Our Work. In this paper, we study the web paths fol-
lowed by real users that become victims of different
types of malware downloads, including social engineer-
ing and drive-by downloads. We have two primary goals:
1) provide context to the attack by automatically identi-
fying and labeling the sequence of web pages visited by
the user prior to the attack, giving insight into how users
reach attack pages on the web; and 2) leverage these an-
notated in-the-wild malware download paths to better un-
derstand current attack trends and to develop more effec-
tive defenses.

To achieve these goals we propose a novel malware
download incident investigation system, named WebWit-
ness, that is designed to be deployed passively on en-
terprise scale networks. As shown in Figure 1, our sys-
tem consists of two main components: an attack path
traceback and categorization (ATC) module and a mal-
ware download defense (MDD) module. Given all (live)
network traffic generated by a user’s browsing activities
within a time window that includes a malware download
event, the ATC module is responsible for identifying and
linking together all HTTP requests and responses that
constitute the web path followed by the user from an
“origin” node (e.g., a search engine) to the actual mal-
ware download page, while filtering out all other irrele-
vant traffic. Afterwards, a statistical classifier automati-
cally divides all collected malware download paths into
update, social engineering and drive-by attacks. We refer
to the output of the ATC module as annotated malware
download paths (AMP).

The AMPs are continuously updated as new malware
downloads are witnessed in the live traffic, and can there-
fore be used to aid the study of recent attack trends. Fur-
thermore, the AMP data is instrumental in designing and
building new defenses that can be plugged into the MDD
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Figure 1: WebWitness – high-level system overview.

module (see Figure 1). As an example, by investigating
real-world web paths leading to drive-by malware down-
loads, we found that it is often possible to automatically
trace back the domain names typically used in drive-
by attacks to inject malicious code into compromised
web pages (e.g., via the source of a malicious script

or iframe tag). The injected code is normally used as
an attack trigger, directing the browser towards an actual
exploit and finally to a “transparent” malware download
and execution. We empirically show that automatically
discovering and promptly blocking the domain names
serving the injected malicious code is a much more ef-
fective defense, compared to the more common approach
of blacklisting the URLs that directly serve the drive-by
browser exploits themselves or the actual malware exe-
cutables (see Section 4.4).
Main Differences from Previous Work. Most previ-
ous works that study the network aspects of malware
downloads focus on building malware detection systems,
especially for drive-by exploit kits and related attacks
(e.g., [13, 30, 38, 40]).

Our work is different from these studies, because our
goal is not to build a drive-by detection system; rather,
we aim to passively trace back and automatically label
the network events that precede different types of in-the-
wild malware downloads, including both drive-by and
social engineering attacks. We show that our investiga-
tion approach can aid in the design of more effective mal-
ware download defenses.

Some recent studies focus primarily on detecting ma-
licious redirection chains as a way to identify possible
malware download events [16,18,20,36]. WebWitness is
different because we devise a generic path trace back ap-
proach that does not rely on the properties of redirection
chains. Our work aims to provide context around mali-
cious downloads by reconstructing the full web path (not
just redirection chains) that brought the victim from an
“origin” page to the download event. In addition Web-
Witness is able to classify the cause of the download
(e.g., drive-by or social engineering) and to identify the
roles of the domains involved in the attack (e.g., trick
page, code injection, exploit, or malware hosting). We
further discuss related work in Section 6.

Summary of Contributions. In summary, we make the
following contributions:

• We investigate the web paths followed by real net-
work users who eventually fall victim to different
types of malware downloads, including social engi-
neering and drive-by downloads. Through this in-
vestigation, we provide quantitative information on
attack scenarios that have been previously explained
only anecdotally or through limited case studies.

• To enable a continuous collection and study of web
paths leading to malware download attacks, we
build a system called WebWitness. Our system can
automatically trace back and categorize in-the-wild
malware downloads. We show that this information
can then be leveraged to design more effective de-
fenses against future malware download attacks.

• We deployed WebWitness on a large academic net-
work for a period of ten months, where we col-
lected and categorized thousands of live malicious
download paths. Using these web paths, we were
able to design a new defense against drive-by down-
loads that rely on injecting malicious content into
(hacked) legitimate web pages. For example, we
show that by leveraging the incident investigation
information output by WebWitness, on average we
can decrease the infection rate for this type of drive-
by downloads by almost six times, compared to ex-
isting URL blacklisting approaches.

2 In-The-Wild Malware Download Study
Goals: In this section we report the results of a large
study of in-the-wild malware downloads captured on a
live academic network. Through this study, we aim to
create a labeled dataset of download paths that can be
used to design (including feature engineering), train, and
evaluate the ATC and MDD modules of WebWitness
shown in Figure 1. A detailed discussion of ATC and
MDD is reported in Sections 3.

2.1 Collecting Executable File Downloads
To collect executable file downloads we use deep packet
inspection to perform on-the-fly TCP flow reconstruc-
tion, keeping a buffer of all recent HTTP transactions
(i.e., request-response pairs) observed on a live network.
For each transaction, we check the content of the re-
sponse to determine if it contains an executable file. If
so, we retrieve all buffered HTTP transactions related to
the client that initiated the download. Namely, we store
all HTTP traffic a client generated preceding (and includ-
ing) an executable file download; this allows us to study
what web path users follow before falling victim to mal-
ware downloads. All data is saved in accordance with the
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policies set forth by our Institutional Review Board and
are protected under a nondisclosure agreement.

2.2 Identifying Malicious Executables
Since many legitimate applications are installed or up-
dated via HTTP (e.g., Windows Update), we immedi-
ately exclude all executable downloads from a manually-
compiled whitelist of domain names consisting of ap-
proximately 120 effective second level domains (e2LDs)
of popular benign sites (e.g., microsoft.com, google.
com, etc.). For the remaining downloads, we scan
them with more than 40 antivirus (AV) engines, using
virustotal.com. In addition, we rescan them period-
ically because many “fresh” malware files are not im-
mediately detected by AV scanners, allowing us to also
take into account some “zero-day” downloads. We label
a file as malicious if at least one of the top five AV ven-
dors (w.r.t. market share) and a minimum of two other
AVs detect it as malicious. The remaining downloads
are considered benign until the rescan. In addition, we
discard binary samples that are assigned labels that are
too generic or based purely on AV detection heuristics.

2.3 Overview of Study Data
To gather our study data we deployed our collection
agent (Section 2.1) on a large academic network serv-
ing tens of thousands of users for a period of 6 months.
Notice that the system was deployed for a total of 10
months, with the study conducted in the first 6 months
and the evaluation in the 4 months that followed (see Sec-
tion 4 details on the evaluation). During these 6 months,
we collected a total of 174,376 executable downloads
from domains that were not on our whitelist. Using
the malicious executable identification process defined in
Section 2.2, we labeled 5,536 downloads as malicious.

However, many of these malicious downloads were re-
lated to adware. As we are primarily interested in study-
ing malware downloads, because they are potentially the
most damaging ones, we devised a number of “best ef-
fort” heuristics to separate adware from malware. For
example, given a malicious file, if the majority of AV
labels contain the term “adware”, or related empirically
derived keywords that identify specific unwanted appli-
cations (e.g., “not-a-virus”, “installer”, “PUP”, etc.), we
label the file as adware. The malicious executables not
labeled as adware by our heuristics were manually re-
viewed to determine if they were truly malware. This re-
sulted in 1,064 malware downloads, with a total of 533
unique samples.

For these 533 unique malware downloads, we per-
formed extensive manual analysis of their download
paths, including reverse engineering web pages, heavy
javascript deobfuscation, complex plugin content analy-
sis, etc. This time-consuming analysis produced a set of

labeled paths, with 164 drive-by, 41 social engineering
and 328 update/drop malware download events.
Study Data Limitations: Our collection agent was de-
ployed on an existing production network monitoring
sensor. This sensor had limited hardware resources; in
addition, our data collection system had to run along-
side production software whose functionality could not
be disrupted. We therefore collected downloads only
during off-peak hours, due to traffic volumes that would
oversubscribe the sensor and result in dropped packets
during other periods of the day. Thus, the malicious
downloads in our study represent only a sample of the
ones that occurred during the six month monitoring pe-
riod. In addition, our system monitors the network in
a purely passive way; therefore, any malicious down-
loads preemptively blocked by existing defenses (e.g.,
URL blacklists such as Google Safe Browsing) were not
observed. Yet, based on our extensive manual analysis,
we believe the 533 malware downloads to be sufficiently
diverse and representative of the overall set of malware
downloads that occurred during our study period.

2.4 Download Path Traceback Challenges
One of the goals of our system is to automatically trace
back the sequence of steps (i.e., HTTP transactions) that
lead victims to be infected via a malware download. One
may think that reconstructing the web path to infection
is fairly easy, because we could rely on the Referer and
Location header fields to link subsequent HTTP trans-
actions together (see RFC2616). For example, a simple
strategy would be to start from the download transaction
and “walk back” the sequence of transactions by follow-
ing the Referer header found in the HTTP requests.

Unfortunately, in practice download path traceback is
much more difficult than it may seem at first. Depend-
ing on the particular version of the browser, JavaScript
engine, and plugin software running on the client, the
Referer and/or Location headers may be suppressed
(e.g., see [14]), resulting in the inability to correctly re-
construct the entire sequence of download path transac-
tions in a given network trace.
Deriving and Measuring Surrogate Features: As part
of our study, we reviewed hundreds of malicious down-
load traces. In most cases we cannot rely completely on
the Referer and Location headers, and we therefore
derive surrogate “referrer indicator” features and heuris-
tics, which can be used to perform a more complete
download path traceback. Next, we define each of the
features we observed, and then provide a measure of how
prevalent they are for malware download paths. While in
this section we simply measure their prevalence, we later
use these features to automate path traceback (Section 3).

First, let us more precisely define what we mean with
download path traceback. Let Td indicate an HTTP
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transaction carrying an executable file download initi-
ated by client C. Given the recording of all web traffic
generated by C during a time window preceding (and in-
cluding) Td , we would like to reconstruct the sequence
of transactions (T1,T2, . . . ,Td) that led to the download,
while filtering out all unrelated traffic. This sequence
of transactions may be the consequence of both explicit
user interactions (e.g., a click on a link) and actions taken
by the browser during rendering (e.g., following a page
redirection). Notice that the traffic trace we are given
may contain a large number of transactions that are com-
pletely unrelated to the download path, simply because
the user may have multiple browser tabs open and multi-
ple web-based applications active in parallel. Thus, po-
tentially producing a large amount of overlapping unre-
lated traffic.

Let T1 and T2 be two HTTP transactions. We found
that the features/heuristics listed below can be used to
determine whether T1 is a likely source of T2, therefore
allowing us to “link” them with different levels of con-
fidence. Table 1 summarizes the prevalence of each fea-
ture in both drive-by and social engineering downloads
(we discuss how we can distinguish drive-by from social
engineering later in Section 2.5). A detailed discussion
of how WebWitness uses these features for automated
download path traceback is given in Section 3.
(1) Location: According to RFC2616, if transaction

T2’s URL matches T1’s Location header, it indi-
cates that T2 was reached as a consequence of a
server redirection from T1.

(2) Referrer: Similarly, if T1’s URL matches T2’s
Referer header, this indicates that the request for
T2 originated (either directly or through a redirec-
tion chain) from T1, for example as a consequence
of page rendering, a click on a hyperlink, etc.

(3) Domain-in-URL: We observed that advertisement
URLs often embed the URL of the page that dis-
played the ad. So, if T1’s domain name is “em-
bedded” in T2’s URL, it is likely that T1 was the
“source” of the request, even though the Referer

is not present. This is especially true if there is only
a small time gap between the transactions.

(4) URL-in-Content: If T1’s response content includes
T2’s URL (e.g., within an HTML or non-obfuscated
JavaScript code), this indicates there is (potentially)
a “source of” relationship that links T1 to T2.

(5) Same-Domain: By investigating numerous drive-by
malware downloads, we found that in many cases the
exploit code and the malware executable file itself
are served from the same domain. This approach is
likely chosen by the attackers because if the exploit
is successfully served, it means that the related mali-
cious domain is currently reachable and serving the
malware file from the same domain helps guarantee a

successful infection (a similar observation was made
in [13]). Therefore, if T1 and T2 share the same do-
main name and are temporally close, this likely indi-
cates that T1 is the “source of” T2.

(6) Commonly Exploitable Content (CEC): In our ob-
servations, most drive-by downloads use “commonly
exploitable” content (e.g., .jar, .swf, or .pdf files that
carry an exploit) to compromise their victims. The
exploit downloads the malicious executable; thus,
if T1 contains commonly exploitable content (CEC)
and T2 is an executable download that occurred
within a small time delta after T1, this indicates that
T1 may be the “source of” T2.

(7) Ad-to-Ad: In some cases, we observed chains
of ad-related transactions where the Referer and
Location header are missing (e.g., due to JavaScript
or plugin-driven redirections). Therefore, if T1 and
T2 are consecutive ad-related requests (e.g., identi-
fied by matching their URLs against a large list of
known ad-distribution sites) and were issued within
a small time delta, this indicates there may be a
“source of” relationship.

Table 1: Success rate of traceback method and “Source-
of” relationships in malware download paths. The num-
bers indicate the percentage of analyzed download paths.

Traceback method success rate Drive-by Social Eng.
Only Referrer and Location 0% 53%
All surrogate referrer features 96% 95%

Feature Drive-by Social Eng.
Location 69% 73%
Referrer 97% 100%
Domain-in-URL 0% 5%
URL-in-Content 17% 17%
Same-Domain 97% 20%
CEC 5% 0%
Ad-to-Ad 6% 10%

As a confirmation to the fact that tracing back malware
download paths is challenging, we found that not a single
drive-by download in our dataset could be traced back
by relying only on the Referer and Location head-
ers. For example, even if 97% of the drive-by download
paths contained at least one pair of requests linked via
the Referer, all drive-by paths contained at least some
subsequence of the path’s transactions that could not be
“linked” by simply using the Referer header.

For social engineering paths, we found that 53% of the
downloads could be traced back using only the Referer
and Location headers. When this was not possible,
the main cause was the presence of requests made via
JavaScript and browser plugins. In some cases, we were
not able to fully trace back the download path. The cause
for the majority of the untraceable drive-by (4%) and so-
cial engineering (5%) downloads, when using all the fea-
tures, was missing transactions likely due to our system
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not observing all related packets.

2.5 Drive-by vs. Social Engineering
We label a malware download path as social engineer-
ing if explicit user interaction (e.g., a mouse click) is re-
quired to initiate a malware download. In contrast, we
label as drive-by those malware downloads that are trans-
parently delivered to the victim via a browser exploit.
As mentioned earlier (Section 2.3), during our study, we
were able to manually review and label 164 drive-by and
41 social engineering malware downloads.
What distinguishes drive-by from social-engineering:
In the following we report the characteristics that we ob-
served for different types of paths. In particular, some of
these characteristics could be leveraged as statistical fea-
tures to build a classifier that automatically distinguishes
between drive-by and social engineering downloads (see
Section 3). We also discuss characteristics of malware
updates/drops that could be used to filter out download
paths that belong neither to the drive-by nor to the social-
engineering class. Table 2 summarizes the prevalence of
each of the characteristics described below.

Table 2: Download path properties.
Feature Drive-by Social eng.
Candidate Exploit Domain Age 0 -
Drive-by URL Similarity 69% 0%
Download Domain Recurrence 0.6% 34%
Download Referrer 0.6% 95%
Download Path Length 6 7
User-Agent Popularity 95% 98%

(1) Candidate Exploit Domain “Age”: Drive-by
download attacks often exploit their victims by de-
livering exploits via files of popular content types
such as .jar, .swf, or .pdf files; we simply re-
fer to these file types as “commonly exploitable”
content (CEC). For example, during our study, we
found that 94% of the drive-by download paths at
some point delivered the exploit via CEC. The do-
mains serving these exploits tend to be short-lived
compared to domains serving benign content of the
same type. Therefore, CEC served from a recently
registered domain is an indicator of a possible drive-
by download path. On the other hand, none of the so-
cial engineering download paths we observed during
our study had this property. Table 2 reports the me-
dian domain name “age”, computed as the number
of days of activities for the domain of a page serv-
ing CEC, measured over a very large passive DNS
database. The median age is less than one day for
drive-by paths, and is not indicated for social engi-
neering paths, because none of the nodes in the so-
cial engineering path served content of the type we
consider as CEC (the overall traffic traces included
HTTP transactions that carried content such as .swf

files, but none of those were on the download path).
(2) Drive-by URL Similarity: The majority of drive-

by downloads (about 70% of our observations) are
served by a small number of exploit kits. Therefore,
in many cases the exploit delivery URLs included in
drive-by download paths share a structural URL sim-
ilarity to known exploit kit URLs. Table 2 reports the
fraction of drive-by download paths that had a sim-
ilarity to known exploit kit URLs greater than 0.8,
measured using the approach proposed in [26].

(3) Download Domain Recurrence: Most domains
serving drive-by and social engineering malware
download are contacted rarely, and often only once
by one particular client at the time of the attack. On
the other hand, malicious software regularly checks
for executable updates. To approximately capture
this intuition, we measured the number of queries to
the malware download domain. As shown in Table 2,
only 0.6% of the malware download domains in our
drive-by paths are queried mulitple times within a
small time window (two days, in our measurements).
The higher percentage of social engineering malware
paths with download domain recurrence is due to the
fact that a significant fraction of the ones we ob-
served used a free file sharing website for the mal-
ware download and that we count the domain query
occurrences in aggregate, rather than per client.

(4) Download Referrer: In case of social engineering
attacks, the HTTP transaction that delivers the mali-
cious file download tends to carry a Referer, usu-
ally due to the direct user interaction that character-
izes them. On the other hand, drive-by attack mal-
ware file delivery happens via a browser exploit. The
request initiated from the shell code typically does
not have a Referer header. Similarly, malware up-
dates/drops initiated by malicious applications are
already running on a compromised machine, and
usually do not carry any referrer information. Ta-
ble 2 shows that only 0.6% of all drive-by paths, in
contrasts to 95% of social engineering paths, carried
a Referer in the download node.

(5) Download Path Length: Drive-by and social en-
gineering attacks typically generate download paths
consisting of several nodes, mainly because a user
has to first browse to a site that eventually leads to
the actual attack. In addition, the malware distribu-
tion infrastructure is often built in such ways that en-
ables malware downloads “as a service”, which en-
tails the use of a number of “redirection” steps. In
contrast, download paths related to malware updates
or drops tend to be very short. Table 2 reports the
median number of nodes for drive-by and social en-
gineering paths. In case of malware updates/drops,
the median length for the path was only one node.
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(6) User-Agent Popularity: The download paths for
both drive-by and social engineering downloads typ-
ically include several nodes that report a popular
browser user-agent string, as the victims use their
browser to reach the attack. On the other hand,
in most cases of a malware drop/update, it is not
the browser, but the update software making the re-
quests. In practice, we observed that the majority of
malware update download paths did not report a pop-
ular user-agent string (only 36% of them did). Ta-
ble 2 reports the percentage of paths that include a
popular user-agent string.

3 WebWitness
Inspired by our study of real-world malware download
paths, we develop a system called WebWitness that can
automate the investigation of new malware download at-
tacks. The primary goal of this system is to provide con-
text around malicious executable downloads. To this end,
given a traffic trace that includes all web traffic recorded
during a time window preceding (and including) a ma-
licious executable file download, WebWitness automati-
cally traces back and categorizes the web paths that led
the victim to the malicious download event.

In this section, we describe the components of our sys-
tem, which are shown in Figure 2.

3.1 ATC - Download Path Traceback
Given a malicious file download trace from a given
client, WebWitness aims to trace back the download path
consisting of the sequence of web pages visited by the
user that led her to a malware download attack (e.g., via
social engineering or to a drive-by exploit). As detailed
in Section 2.4, the trace may contain many HTTP trans-
actions that are unrelated to the download. Furthermore,
it is not always possible to correctly link two related con-
secutive HTTP transactions by simply leveraging their
HTTP Referer or Location headers.

To mitigate the limitations of referrer-only approaches
and more accurately trace back the download path,
we devise an algorithm that leverages the features and
heuristics we identified during our initial study of in-
the-wild malware downloads presented in Section 2.4.
In summary, we build a transactions graph, where
nodes are HTTP transactions within the download trace,
and edges connect transaction according to a “proba-
ble source of” relationship (explained in detail below).
Then, starting from the node (i.e., the HTTP transaction)
related to the malware file download, we walk back along
the most probable edges until we find a node with no pre-
decessor, which we label as the “origin” of the download
path. In the following, we provide more details on our
traceback algorithm.
Transactions Graph. Let D be the dataset of HTTP

traffic generated by host A before (and including) the
download event. We start by considering all HTTP trans-
actions in D, and construct a weighted directed graph
G = (V,E). The vertices are A’s HTTP transactions
and the edges represent the relation “probable source
of” for pairs of HTTP transactions. As an example, the
edge e = (v1 → v2) implies that HTTP transaction v1
likely produced HTTP transaction v2, either automati-
cally (e.g., via a server-imposed redirection, javascript,
etc.) or through explicit user interaction (e.g., via a hy-
perlink click). Thus, we can consider v1 as the “source
of” v2. Each edge has a weight that expresses the level
of confidence we have on the “link” between two nodes
(the weights are ordinal so their absolute values are not
important). For example, the higher the weight assigned
to e = (v1 → v2), the stronger the available evidence in
support of the conclusion that v1 is the “source of” v2
(edge weights are further discussed below). Also, let t1
and t2 be the timestamp of v1 and v2, respectively. Re-
gardless of any available evidence for a possible edge,
the two nodes may be linked only if t1 ≤ t2.
Heuristics and Edge Weights. To build the graph G
and draw its edges, we leverage the seven features that
we indentified in Section 2.4. Specifically, given two
nodes (essentially, two URLs) in the directed graph G
described earlier, an edge e = (v1→ v2) is created if any
of the seven features is satisfied. For example, if v1 and
v2 can be related via the “Domain-in-URL”, we draw an
edge between the two nodes. We associate a weight to
each of the seven features; the “stronger” the feature, the
higher its weight. For example, we assign a weight value
we = 7 to the “Location” feature, we = 6 to the “Refer-
rer” feature, and so on, with the “Ad-to-Ad” receiving a
weight we = 1. The weight values are conveniently as-
signed simply to express relative importance and prece-
dence among the edges to be considered by our greedy
algorithm. If more than one feature happens to link two
nodes, the edge will be assigned a weight equal to the
maximum weight among the matching features.
Traceback Algorithm. Once G has been built, we use
a greedy algorithm to construct an approximate “back-
trace path”. We start from the graph node related to the
executable download event, and walk backwards on the
graph by always choosing the next edge with the high-
est weight. Consider the example graph in Figure 3, in
which thicker edges have a higher weight. We start from
the download node d. At every step, we walk one node
backwards following the highest weight edge. We pro-
ceed until we reach a node with no predecessor, which
we mark as the origin of the download path. If a node
has more than one predecessor whose edges have the
same weight, we follow the edge related to the prede-
cessor node with the smaller time gap to the current node
(measured w.r.t. the corresponding HTTP transactions).
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Possible False and Missing Edges: Naturally, the
heuristics we use for tracing back the download path may
in some cases add “false edges” to the graph or miss
some edges. However, notice that these challenges are
mitigated (though not always completely eliminated) by
the following observations:

i) Our algorithm and heuristics aim to solve a much
narrower problem than finding the correct “link” be-
tween all possible HTTP transactions in a network
trace, because we are only concerned with tracing
back a sequence of HTTP transactions that termi-
nate into a malicious executable download.

ii) The “false edge” problem is mitigated by the fact
that we always follow the strongest evidence. For
example, consider Figure 3. Suppose the edge (2→
3) was drawn due to rule (6), while edge (5→ 3)
was drawn due to rule (2). In this case, even though
edge (2→ 3) was mistakenly drawn (i.e., nodes 2
and 3 have no real “source of” relationship), the
mistake is irrelevant, because our algorithm will
choose (5→ 3) as part of the path, which is sup-
ported by stronger evidence.

iii) Our algorithm can output not only the sequence of
HTTP transactions, but also the nature (and confi-
dence) of every edge. Therefore, a threat analyst (or
a downstream post processing system) can take the
edge weights into account, before the reconstructed
download path is used to make further decisions
(e.g., remediation or takedown of certain domains
in the download path).

3.2 ATC - Download Cause Classification

After we trace back the download path, we aim to la-
bel the reconstructed path as either social engineering or
drive-by download. As shown in Figure 2, the output of
this classification step allows us to obtain the annotated
malware download paths (AMPs), which are then pro-
vided as input to the defense module (MDD).

While we are mainly interested in automatically iden-
tifying social engineering and drive-by download paths,
we build a three-class classifier that can distinguish be-
tween three broad download causes, namely social engi-
neering, drive-by, and update/drop. Essentially the up-
date/drop class allows us to more easily identify and ex-
clude malware downloads that are not caused by either
social engineering or drive-by attacks.

To automatically classify the “cause” of an executable
file download, WebWitness uses a supervised classifica-
tion approach. First, we describe how we derive the fea-
tures needed to translate malware download events into
feature vectors that can be given as input to a statistical
classifier. Then, we discuss how we derive the dataset
used to train the classifier. To actually build the classifier,
we used the random forest algorithm [7] (see Section 4).

Features: To discriminate between the three different
classes, we engineered six statistical features that reflect,
with a one-to-one mapping, the six characteristics of
drive-by and social-engineering malware download paths
that we discussed and measured in Section 2.5. For ex-
ample, we measure binary feature (1) “Download Refer-
rer” as true if the HTTP request that initiated the down-
load has a Referer header; a numerical feature (2) rep-
resenting the “age” of domains serving “commonly ex-
ploitable” content; etc.

Training dataset: To train the classifier, we use the
dataset of in-the-wild malware download paths that we
collected and manually labeled during our initial inves-
tigation of in-the-wild malware downloads discussed in
Section 2.5. Our training dataset contained the follow-
ing number of labeled download paths: 164 instances of
drive-by download paths, 191 instances of social engi-
neering paths, and 328 update/drop samples.
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3.3 MDD - Drive-by Defense
The annotated download paths output by ATC provide a
large and up-to-date dataset of real-world malware down-
load incidents, including the web paths followed by the
victims (see Figure 2). This information is very useful
for studying new attack trends and developing more ef-
fective defenses. As new defenses are developed, they
can be plugged into the MDD module, so that as new
malware download paths are discovered we can automat-
ically derive appropriate countermeasures.

As an example that demonstrates how WebWitness
can enable the development of more effective malware
download defenses, we develop a new defense against
drive-by download attacks based on code injections.
While code injection attacks are not new, current de-
fenses rely mainly on blacklisting the URLs serving the
actual drive-by exploit or malware download, rather than
blocking the URLs from which malicious code is in-
jected. Our results (Section 4) show that by automati-
cally tracing back drive-by download paths and identi-
fying the code injection URLs, we can enable better de-
fenses against future malware attacks.
Identifying code injection URLs: Given a drive-by
download path output by the ATC module, we aim to
automatically identify the landing, injection, and exploit
nodes within the download path.We tackle this problem
using a supervised classification approach. Namely, we
train a separate classifier for each of the three types of
nodes on a drive-by download path. The final output is a
labeled drive-by download path.
Exploit Page Classifier: The exploit classifier takes as
input a drive-by download path and labels its nodes as
exploit or non-exploit. We define an exploit node as a
page that carries content that exploits a vulnerability on
the victim’s machine, causing it to eventually download
a malicious executable. The search for exploit nodes pro-
ceed “backwards”, starting from the node prior to the ex-
ecutable download and ending at the root. It is not un-
common to have more than one exploit node in one path
(e.g., some exploit kits try several exploits before suc-
cess). Thus, multiple nodes could be labeled as exploit.

To build the classifier, we use the following features:
(1) Hops to the download page. Number of nodes on the

download path between the considered node and the
final malware download node. Intuition: It is typical
for the exploit node to only be a few hops away from
the actual download. In many cases, the node prior to
the download event is an exploit node, because once
the exploit succeeds the executable is downloaded
immediately.

(2) “Commonly exploitable” content. Boolean feature
that indicates if a node contains content for Java, Sil-
verlight, Flash or Adobe Reader. Intuition: Browser
plug-ins are a popular exploitation vector. The ex-

ploit is typically delivered though their content.
(3) Domain age. The number of days since the first ob-

servation of the node’s effective second level domain
in a large historic passive DNS database. Intuition:
Exploit domains tend to be short-lived and often only
active for one day.

(4) Same domain. Boolean feature that is true if the
node’s domain is equal to the download domain. In-
tuition: It is common for the exploit and download to
be served by the same domain, as also noted in [13].

Landing Page Classifier: Once the exploit node(s) is la-
beled, we attempt to locate the landing page URL. Essen-
tially, the landing page is the web page where the drive-
by attack path begins. Often, the landing page itself is
a non-malicious page that was previously compromised
(or “hacked”). The landing page classifier calculates the
probability that a node preceding the exploit node (la-
beled by the exploit page classifier discussed earlier) is
a landing page. Nodes with a probability higher than a
tunable detection threshold (50% in our experiments) are
classified as “candidate landing” nodes. If there are mul-
tiple candidates, the one with the highest probability is
labeled as the landing node.

To label a node as either landing or non-landing, we
engineered the following statistical features:
(1) Hops to the exploit page. This feature set consists

of the number of non-redirect nodes and unique ef-
fective second level domains between the node and
the exploit node. Intuition: Often, all the nodes
between the landing and exploit node are redirects
[36]. Also, most drive-by downloads use one to
three types of malicious domains (injection, exploit,
download). Therefore, in most cases there are zero
or one domains (the one being the injection domain)
on the download path between the landing and ex-
ploit nodes.

(2) Domain age. We use two features based on domain
age. The first feature is the age of the node’s effec-
tive second level domain as computed from a passive
DNS database. Intuition: The domains associated to
(“hacked”) landing pages tend to be long-lived. Fur-
thermore, “older” landing pages tend to offer more
benefits to the attackers, as they often attract more
visitors (i.e., potential victims), because it takes time
for legitimate pages to become popular. The sec-
ond feature is the age of the oldest domain between
the node and the exploit node. Intuition: Nodes on
the download path between the landing and exploit
nodes tend to be less than a year in age. This is be-
cause they are typically malicious and recently reg-
istered.

(3) Same domain. Boolean feature that is true if the
node’s domain is equal to the exploit domain. In-
tuition: It is uncommon for an exploit to be served
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from the same domain as the landing page. They are
typically kept separate because installing an exploit
kit on a compromised website may increase the like-
lihood of detection by the legitimate site’s webmas-
ter. In addition, it is much easier to manage a central-
ized exploit kit server than keep all the compromised
websites up-to-date with the latest exploits.

Injection Page Classifier: We define the injection page
to be the source of the code inserted into the “hacked”
landing page. Typically, the injection and exploit nodes
are separate and are served via different domain names.
This provides a level of indirection that allows the ex-
ploit domain to change without requiring an update to the
landing page. The injection node by definition is a suc-
cessor to the landing page, but depending on the injection
technique it may or may not be directly present in the
download path traced back by the ATC module. There-
fore, the classifier calculates the injection page probabil-
ity for each direct successor of the landing node in the
transactions graph, instead of only considering nodes in
the reconstructed download path. The successor of the
landing page node with the highest probability is labeled
as the injection page node.

To identify the injection page, for each successor of
the landing node we measure the following features:
(1) On path. Boolean feature indicating if the node is on

the download path. Intuition: Being on the download
path and a successor of the landing page, makes it a
good candidate for the injection node. However, the
injection node is not always on the download path
due to the structure of some drive-by downloads.

(2) Advertisement. Boolean feature that is true if the
node is an ad. Intuition: By definition, the injection
page is not an ad, but code injected into the landing
page. It is common for ads that are not related to the
malicious download to be served on a landing page.
This feature help us exclude those ad nodes.

(3) Domain age. The number of days since the first
observation of the node’s effective second level do-
main in passive DNS. Intuition: Injection pages typ-
ically have the sole purpose of injecting malicious
code. They are rarely hosted directly on compro-
mised pages, because this would expose the mali-
cious code to cleanup by the legitimate site owners,
ending the attacker’s ability to exploit visitors. Con-
sequently, injection pages are hosted on “young” do-
mains that are typically active for the lifetime of a
website compromise.

(4) Successors. There are two features that are derived
from the node’s successors. First is the number of
direct successors. Intuition: Injection nodes tend to
have only one direct successor. They typically per-
form an HTTP redirect or dynamically update the
DOM to include the URL of the exploit domain. Be-

nign pages often have more than one direct successor
because they load content from many different files
or sources. The second feature is boolean and it is
true if one of the node’s successors is on the down-
load path. It indicates there is a possible “source of”
relationship between it and a node on the download
path. Even though the node itself may not be on the
download path.

(5) Same domain. There are two boolean features that
compare domain names. The first checks for equal-
ity between the node’s domain and the landing do-
main. Intuition: It is uncommon for the landing do-
main to equal the injection domain for reasons simi-
lar to those described in the landing page classifier’s
“same domain” feature described earlier. The second
feature compares the node’s domain to the exploit
domain. Intuition: In approximately 70% of the ob-
servations in our measurement study (Section 2), the
exploit and injection domains were different.

4 Evaluation
In this section, we evaluate WebWitness’ ATC and MDD
modules. We also demonstrate the overall benefits of
our new defense approach against drive-by downloads,
by measuring the effectiveness of blacklisting the injec-
tion domains discovered by WebWitness. We show that
while blacklisting the injection domains provides a bet-
ter defense, compared to blacklisting only the exploit and
download domains, injection domains appear very rarely
in current blacklists, including Google Safe Browsing
and a variety of large public blacklists.

4.1 ATC - Download Cause Classification
The download cause classifier uses a supervised learning
approach to label each download path as either social
engineering, drive-by or update/drop (Section 3.2). To
evaluate its accuracy, we use WebWitness to traceback
and classify all malicious downloads collected from the
large academic network (Section 2) in the months fol-
lowing our initial study and development of the system.
Specifically, all download events and samples used dur-
ing evaluation have no overlap with the data we used for
the study presented in Section 2, to design WebWitness’
features and heuristics, or to train our classifiers. Each
malicious download observed during the testing period
was then classified as one of the following: drive-by, so-
cial engineering or update. From each of the three pre-
dicted classes we randomly sampled 50 downloads for
manual verification. We limited the sample size to a total
of 150 downloads because of the extensive manual anal-
ysis required to determine the ground truth, including re-
verse engineering web pages, heavy javascript deobfus-
cation, complex html and plugin content analysis, etc.
This time consuming review process allowed us to iden-
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tify the correct web path and the true cause of download,
creating our ground truth for the evaluation. Table 3 re-
ports the confusion matrix for the cause classifier.

Table 3: Cause Classifier - Confusion Matrix Results
Predicted Class

Class Drive-by Social Update/Drop

Ground Truth
Drive-by 47 1 0
Social 2 46 3
Update/Drop 1 3 47

The classifier correctly labeled over 93% of the down-
loads. Notice that these results represent the overall sys-
tem performance of the ATC module, because the down-
load paths used in the experiment (i.e., input to the cause
classifier) were extracted using our download path trace-
back algorithm (Section 3.1). The two social engineering
samples classified as drive-by downloads both had com-
monly exploitable content (CEC) on the download path.
They were misclassified even though the CEC domain
ages were greater than 200 days. The three update/drop
samples classified as social engineering was caused by
invalid download paths resulting from the false edges de-
scribed in the next section. Finally the three social en-
gineering downloads misclassified as update/drop was a
result of small downloads paths (all were length 3) and
high download domain recurrence (all greater than 20 of
the 48 hourly buckets).

4.2 ATC - Download Path Traceback
To evaluate the accuracy of our download path trace-
back algorithm (Section 3.1), we use the 150 manually
reviewed downloads; i.e., our ground truth, from Sec-
tion 4.1. For path traceback, we consider two types of
errors for review: (1) missing nodes: the traceback stops
short, before reaching the origin of the download path
(recall that the traceback algorithm works its way back-
wards from the download node to the path origin); (2)
false node: a node that should not appear in the download
path. Table 4 summarizes the results of our evaluation.

Table 4: Download Path Traceback Results.
Paths Correctly Traced Back Missing False

Drive-By 48 45 3 0
Social 51 46 2 3
Update/Drop 51 47 0 4

The results show that 92% of the download paths were
correctly traced back by our system. The 5 with miss-
ing nodes all had a referer header in the origin node’s
request, but a matching URL was not contained in the
trace. This was likely due to our system not observing
all the packets related to those transactions. The 7 with
the false nodes were all caused by the “same-domain”
heuristic incorrectly connecting the paths of an update
and a social engineering download. The heuristic failed

because the updates were performed by a malicious ex-
ecutable seconds after the user was socially engineered
into downloading it from the same domain as the update.

4.3 MDD - Detecting Injection Domains
As discussed in detail in Section 3.3, we aim to automati-
cally identify the malicious code injection domains often
employed in drive-by download attacks. To achieve this
goal, we use a cascade of three classifiers: an exploit, a
landing, and an injection classifier (Section 3.3). In the
following, we evaluate the performance of each one.

To build the training dataset, we use 117 drive-by mal-
ware downloads collected and manually labeled during
our six-month malware study described in Section 2.
These 117 drive-by paths contained 246 exploit nodes
(notice that it is not uncommon for a drive-by attack to
serve more than one exploit, especially when the first ex-
ploit attempt fails). There is only one landing node and
one injection node per download path.

Table 5: Node Labeling for Drive-By Download Paths
Experiment Classifier Correctly Labeled Incorrectly Labeled

Cross-Validation
Exploit 99.19% 0%
Landing 96.58% 0.17%
Injection 94.87% 0.07%

We performed 10-fold cross-validation tests using the
dataset described above. Table 5 summarizes the results.
As can be seen, all classifiers are highly accurate. The
results of the the injection page classifier represent the
performance of the final injection domain detection task.
This is due to fact that all tests were conducted using the
three classifiers (exploit, landing, and injection) in cas-
cade mode to mirror an actual deployment of WebWit-
ness’ MDD module. Thus, overall, we obtained a mini-
mum of 94.87% detection rate at 0.07% false positives.

There were a total 7 domains mislabeled as injection
by our system. The most common error was labeling the
exploit domain as the injection domain; i.e., missing the
fact that a separate injection domain existed. This was
the case for 5 of the 7 mislabeled domains. Since these
domains are malicious, blacklisting them will not cause
false positives. The other two domains were benign. One
of them had an Alexa rank over 260,000 and the other
above 1,600,000. To mitigate such false positives, the
newly discovered injection domains could be reviewed
by analysts before blacklisting. As WebWitness provides
the analyst with full details on the traffic collected before
the download and the reconstructed download path, this
information can make the analyst’s verification process
significantly less time-consuming.

4.4 MDD - Defense Efficacy & Advantages
Domain name and URL blacklisting are commonly prac-
ticed defenses [2]. However, blacklists are only effective

10



if the blacklisted domains remain in use for some period
of time after they are detected. The longer-lived a mali-
cious domain, the more useful it is to blacklist it. As dis-
cussed in Sections 3.3 and 4.3, WebWitness is able not
only to identify the domains from which malware files
are downloaded, but also to identify the malicious code
injection and exploit domains within drive-by malware
download paths. Clearly, these domains are all candi-
dates for blacklisting.

To evaluate the efficacy of blacklisting the code injec-
tion domains, we demonstrate the advantages this pro-
vides compared to the currently more common approach
of blacklisting the exploit and download domains. To this
end, we use a set of 88 “complete” injection-based drive-
by download paths that we were able to collect from
a large academic network. These samples were “com-
plete” paths in the sense that they were manually veri-
fied to have an injection, exploit, and malware download
node (and related domain).

We evaluate the effect of blocking the different types
of drive-by path domains by counting the number of po-
tential victims that would be saved by doing so. Specifi-
cally, we define a potential victim as a unique client host
visiting a blacklisted domain. Notice that the actual num-
ber of hosts that get infected may be smaller than the
number of potential victims, because only some of the
hosts that visit a malicious domain involved in a drive-by
download attack will “successfully” download and run
the malware file (e.g., because an anti-virus blocked the
malware file from running on the machine). However,
we can use the potential victim count to provide a relative
comparison on the effectiveness of blacklisting injection
versus exploit and malware download domains.

To count the potential victims, we rely on a very large
passive DNS (pDNS) database that spans multiple In-
ternet Service Providers (ISPs) and corporate networks.
This pDNS dataset stores the historic mappings between
domains and IP addresses, and also provides a unique
source identifier for each host that queries a given do-
main name. This allows us to identify all the unique hosts
that queried a given domain in a given timeframe (e.g., a
given day). For each injection-based drive-by download
paths in our set, we compute the potential victims saved
by counting the number of unique hosts that query the
injection, exploit, and file download domains in the 30
days following the date when we observed and labeled
the download event. Figure 4 shows our results, in which
day-0 is the day when we detected a malicious down-
load path (the victims counts are aggregated, per day, for
all hosts contacting a malicious domain). We can im-
mediately see that the number of potential victims that
query the exploit or file download domains rapidly drops
as the exploit domain ages. On the other hand, injection
domains are longer lived, and blacklisting them would
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Figure 4: Potential victims saved by blocking the injec-
tion versus exploit/download domains on drive-by paths.

prevent a much larger number of potential victims from
being redirected to new (unknown) and frequently churn-
ing exploit and file download domains. Blacklisting the
injection domain saves almost 6 times more potential vic-
tims, compared to blacklisting the exploit domain.

4.5 Blacklists & Google Safe Browsing
In this section, we aim to gain additional insights into the
advantages that could be provided by our WebWitness’
MDD module, compared to existing domain blacklists.
Public Domain Blacklists First, given the entire set
of malicious domain names related to drive-by down-
loads discovered during our study and deployment of
WebWitness, we counted how many of these domains
appeared in popular public blacklists. We also mea-
sured the delay between when we first discovered the
domain on a malware download path and when it ap-
peared on a blacklist. This was possible because we
repeatedly collected all domain names reported by the
following set of public blacklists every day for more
than a year: support.clean-mx.de, malwaredomains.com,
zeustracker.abuse.ch, phishtank.com and malwaredo-
mainlist.com. Table 6 summarizes our findings.

Table 6: Public Blacklisting Results.
Uniq. Domains Days: Detect to Blacklist

Observed Blacklisted Min. Med. Mean
Exploit/Download 152 9 1 20 29
Injection 52 6 20 31 36

As shown in Table 6, from all drive-by download paths
that we were able to identify, reconstruct, and label, we
collected a total of 52 unique drive-by code injection do-
mains and 152 unique drive-by exploit and malware file
download domains. Overall, less than 10% of these do-
mains ever appeared on a public blacklist. As we can
see, more exploit/download domains (a total of 9) were
blacklisted, compared to the injection domains (only 6).
Furthermore, we can see that the minimum time it took
for an injection domain to appear in at least one blacklist
was 20 days, whereas some exploit domains were black-
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listed almost immediately (after only one day).
Because injection domains are typically longer lived

than exploit domains, and because the same injection do-
main is often used throughout the course of a drive-by
download campaign to redirect users to different (short-
lived) exploit domains, identifying and blocking injec-
tion domains has a significant advantage. By helping to
quickly identify and blacklist injection domains, Web-
Witness enables the creation of better defenses against
drive-by downloads, thus helping to significantly reduce
the number of potential malware victims, as we also
demonstrated in the previous Section 4.4.
Google Safe Browsing For the last few weeks of our de-
ployment of WebWitness, we checked the domain names
related to the drive-by download paths reconstructed by
our system against Google Safe Browsing (GSB) [2].
Specifically, given a malware download path and its ma-
licious domains, we queried GSB on the next day, com-
pared to the day the malware download was observed.
Overall, during this final deployment period we observed
34 drive-by download paths. GSB detected a total of 6
malicious domains that were related to only 4 out of the
34 downloads. The domains GSB detected were used to
serve drive-by exploits, the malware file themselves, or
were related to ads used to lead the victims to a browser
exploit. None of the domains detected by GSB were in-
jection domains, even though our 34 download paths in-
cluded 12 unique injection domains.

It is important to notice, however, that while GSB de-
tected malicious domains related to only 4 out of our 34
drive-by download paths, there may be many more mal-
ware downloads that WebWitness cannot observe, sim-
ply because they are blocked “up front” by GSB. Be-
cause WebWitness passively collects malware download
traces from the network whenever a malicious executable
file download is identified in the traffic, it is very possi-
ble that in many cases GSB simply prevented users who
were about to visit a drive-by-related domain from load-
ing the malicious content, and therefore from download-
ing the malware file in the first place. Nonetheless, the
fact that WebWitness automatically discovered 30 drive-
by download paths that were not known to GSB demon-
strates that our system can successfully complement ex-
isting defenses.

4.6 Case Studies
4.6.1 Social Engineering

Figure 5 shows the download path for an in-the-wild
social engineering attack, including the “link” relation-
ships between nodes in the path. The user first per-
forms a search on www.youtube.com (A) for a “face-
book private profile viewer”, which is the root of the
path. Next, the user clicks on the top search result lead-
ing to a “trick” page on www.youtube.com (B), which

hosts a video demonstrating a program that supposedly
allows the viewing of the private profiles of Facebook
users. A textual description under the video provides a
link to download a “profile viewer” application through
a URL shortener goo.gl (C). This shortened URL link
redirects the user to uploading.com (D), a free file
sharing site that prompts the user with a link to start
the download. This leads to another uploading.com

(E) page that thanks the user for downloading the file
and opens a new uploading.com (F) page that includes
an <iframe> with source fs689.uploading.com (G),
from which the executable file is downloaded. The file is
labeled as “Trojan Downloader” by some anti-virus scan-
ners.

www.youtube .com

www.youtube .comB

uploading .com

uploading .com

uploading .com

Redirect
ReferrerA

C D

E

F

root page

download page

goo .gl

G fs689.uploading .com

trick page

Figure 5: Social engineering download example.

Notice that no exploit appears to be involved in this
attack, and that the user (highly likely) had to explicitly
click on various links and on the downloaded malware
file itself to execute it.

4.6.2 Drive-by

Figure 6 shows the download path related to an in-the-
wild drive-by download.

coscoslidia .org smalltableschears .biz
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download page

exploit page

injection page

Figure 6: Drive-by download example.

The download path originates from (A)
www.google.com (the root page), where the user en-
tered the search terms “add years and months together.”
The first link in the search results, which the user clicked
on, is for a webpage (B) on www.excelforum[dot]com

(the landing page). Sadly, the page the user landed
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Figure 7: “Root” of malware download paths.

on was compromised several days earlier, result-
ing in the addition of a <script> tag with source
at coscoslidia[dot]org, which is the injection
page. The script is automatically retrieved from (C)
and executed, forcing an <iframe> to be added and
rendered. The source of the frame (D) is on the
site smalltableschears[dot]biz, from which the
content is immediately fetched and included in the
page. The newly loaded javascript served by (D) then
checks for the presence of vulnerable versions of several
browser plugins. It quickly matches a version of the
installed Adobe Flash Player to a known vulnerabil-
ity and dynamically adds another <iframe> to the
page, which pulls a malicious Flash exploit file from
(E) on the same smalltableschears[dot]biz site
(the exploit page). The Flash exploit succeeds and
the shellcode fetches a malware binary (labeled as
ZeroAccess by some AVs) from (F) on the same domain
smalltableschears[dot]biz (the download page).

4.7 “Origin” of Malware Download Paths
Figure 7 shows a breakdown of the drive-by and social
engineering “origins” behind the malware downloads.
For drive-by downloads, 64% of the download paths
started with a search. We noticed that the search query
keywords were typically very “normal” (e.g., searching
for a new car, social events, or simple tools, as shown
in the example in Section 4.6.2), but unfortunately the
search results linked to hacked websites that acted as the
“entry point” to exploit distribution sites and malware
downloads.

For social engineering downloads, about 60% of the
web paths started with a search. Search engine queries
that eventually led to social engineering attacks tended
to be related to less legitimate content. For example,
the search queries were often related to free streaming
links, pirated movies, or pirated versions of popular ex-
pensive software. In these cases, the search results con-
tained links offering content relevant to the search, but
the related search result pages would also encourage the

user to install malicious software disguised as some re-
quired application (e.g., a video codec or a software key
generator).

The second most common origin is direct links,
whereby a user arrives to a webpage directly (e.g., by
clicking on a link within a spam email), rather than
through a link from another site. Most of these direct
links point to a benign website that is either hacked or
displays malicious ads.

Facebook and Twitter represent a relatively infrequent
origin for malware downloads (7% and 3% of the cases,
respectively). While both Facebook and Twitter usually
rely on encrypted (HTTPS) communications, we were
able to determine if a download path originated from
their sites by noticing that Facebook makes sure that all
external requests carry a generic www.facebook.com re-
ferrer [14]. On the other hand, requests initiated by click-
ing on a link published on twitter carry a referrer contain-
ing a t.co shortening URL. During our entire deploy-
ment, we only observed one case in which a link from
Facebook or Twitter led directly to a drive-by exploit kit.
In all other cases, the links led first to a legitimate page
that was hacked or that displayed a malicious ad.

For the remaining malicious downloads (less than 3%,
overall) we were unable to trace them back to their origin
(e.g., due to missing traffic).

During our deployment, we also found that malicious
ads are responsible for a significant fraction of the mal-
ware downloads in our dataset. Specifically, malicious
ads were included in the web path of about 25% of drive-
by and 40% of social engineering malware downloads.
The malicious ads we observed were typically displayed
on relatively unpopular websites. We observed only one
example of a malicious ad served on a website with a US
Alexa ranking within the top 500.

5 Discussion and System Limitations
Our system only collected data during off-peak hours
because it was sharing hardware resources with a pro-
duction network monitoring system whose functionality
could not be disrupted. Thus, our data is just a sample
of the malicious downloads that occurred during this pe-
riod. Also, due to the significant efforts required to an-
alyze complex malware download traces, our evaluation
ground truth is limited to a representative sample of the
malicious downloads that occurred in the monitored net-
work. However, based on our extensive manual analysis,
we believe the samples to be very diverse because of the
various exploit kits, exploits, social engineering tricks
and malware observed, and therefore representative of
the overall set of malware downloads that occurred dur-
ing our deployment.

One may think that attackers could avoid detection by
simply distributing malicious files over encrypted web
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traffic, using HTTPS. However, it is worth noting that
in sensitive networks (e.g., enterprise and government
networks) it is now common practice to deploy SSL
Man-In-The-Middle (MITM) proxies, which allow for
inspecting and recording the content both HTTP and
HTTPS traffic (perhaps excluding the traffic towards
some whitelisted sides, such as banking applications,
etc.). WebWitness could simply work alongside such
SSL MITM proxies.

Because the detection of malicious executable files is
outside the scope of this paper, we have relied on a “de-
tection oracle” to extract malicious download traces from
the network traffic. For the sake of this study, we have
chosen to rely on multiple AV scanners. It is well known,
though, that AV scanners suffer from false positive and
negatives. In addition, the labels assigned by the AV are
often not completely meaningful. However, we should
consider that using multiple AV scanners reduces the
false negatives, and the set of filtering heuristics we dis-
cussed in Section 2.2 can mitigate the false positives. In
addition, we used re-scanning over a period of a month
for each of the downloaded executable files we collected,
to further improve our ground truth. Finally, we used the
AV labels to filter out adware downloads, because we are
mainly interested in the potentially most damaging mal-
ware infections. We empirically found that the AV labels
usually do a decent job at separating the broad adware
and malware classes. Also, we manually reviewed all
samples of malware downloads in our dataset, to further
mitigate possible mislabeling problems.

Attackers with knowledge of our system may try to
evade it by using a purposely crafted attack in attempt
to alter some of the features we use in Section 3 to per-
form path traceback, categorization and for node label-
ing. Most likely, the attacker will have as a primary goal
the evasion of our traceback algorithm. This, for exam-
ple, could be done by forcing a “disconnect” between the
final malware download node and its true predecessors.
Such an attack theoretically may be possible, especially
in case of drive-by attacks. In such events the browser is
compromised and is (in theory) under the full control of
the attacker. Now, if the malware download node is iso-
lated in the reconstructed download path, the cause clas-
sifier may label the download event a malware update,
thus preventing any further processing of the download
path (i.e., any attempt to identify the exploit and injec-
tion domains).

However, we should also notice that most drive-by
downloads are based on what we refer as “commonly ex-
ploitable” content in Section 3.3 (e.g., .jar, .swf, or .pdf
files that carry an exploit). For such type of drive-by
download attacks, the “commonly exploitable” content
feature should connect the exploit and the download, if
they occur in a small time window. If needed, the time

window could be extended by requiring the domain sev-
ering the content to be young by checking its “age” be-
fore making a connection. Since the exploit must occur
before the attacker has control of the browser, it is more
difficult to evade.

6 Related Work
Client honeypots actively visit webpages and detect
drive-by downloads though observing changes to the sys-
tem [1, 21, 22, 28, 29] or by analyzing responses for ma-
licious content [3, 10, 24]. These systems tend to have a
low false positive rate, but only find malicious websites
by visiting them with exploitable browser configurations;
also, they have limited range in the quantity of pages
they can crawl because they are much slower than static
crawlers. Often candidate URLs are selected by filtering
content from static crawlers [28, 29, 35], using heuristics
to visit parts of the web that are likely more malicious [8]
or using search engines to identify webpages that contain
content similar to known malicious ones [12].

A number of techniques have been developed to de-
tect drive-by downloads through examining content [10,
11, 15, 32, 34]. Signature based intrusion detection sys-
tems, such as Snort [34], passively search network traffic
content for patterns of known attacks. Both static [11]
and dynamic [10] analysis of JavaScript has been used to
detect attacks. The disadvantages of using content is that
it is complex and under the control of the attacker. Poly-
morphic malware and code obfuscation results in missed
attacks for signature and static analysis systems, and dy-
namic analysis can be detected by malware and subverted
by altering its execution path [15].

Other systems focus on the redirection chain that leads
to drive-by downloads. Stringhini et al [36] create redi-
rection graphs by aggregating redirection chains that end
at the same webpage. Features from the redirection
graph and visiting users are then used to classify the
webpage as malicious or benign. Mekky et al [20] build
browsing activity trees using the referrer and redirection
headers as well as URLs embedded in the content. Fea-
tures related to the redirection chain for each tree are ex-
tracted and used to classify the activity as malicious or
benign. Li et al [17] apply page rank from the dark and
bright side of the web to a partially labeled set of redirec-
tion chains to separate benign and malicious web paths.
They find the majority of malicious paths are directed
through traffic distribution systems. Using features from
the redirection chain, Surf [18] detects malicious web-
sites found in search engine results due to search poison-
ing and WarningBird [16] identifies malicious webpages
posted on Twitter. These systems focus on the redirection
chain and features extracted from it to classify a web ac-
tivity as benign or malicious. Whereas, WebWitness pro-
vides context to malicious downloads by reconstructing
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the full download path (not just the redirection chain),
classifying the cause of the download (drive-by, social,
update) and identifying the roles of the domains involved
in the attack.

Static blacklists [2] of domains/URLs and domain rep-
utation systems [4, 5] identify malicious websites to pre-
vent users from visiting them. Many of the domains on
static blacklists are exploit and download domains that
change frequently rendering them less effective. On the
other hand, reputation systems only provide a malicious
score for a domain and do not indicate their role or give
context to an attack. By analyzing the structure of a ma-
licious download, WebWitness can identify the type of
attack and the domain roles; providing the highest value
domains for blocking and reputation training data.

Recently researchers have proposed executable repu-
tation systems [13,30,38] due the limitations of signature
AV [27]. Instead of using content features from the exe-
cutable content, they focus on properties of the malware
distribution infrastructure. These systems can be very
effective at identifying malicious downloads. However,
they do not provide any context such as how and why
the user came to download a malicious executable. Pro-
viding download context is the goal of WebWitness not
malicious executable detection. We see these systems as
complementary to WebWitness and as good candidates
to replace our current oracle (signature AV) for malicious
executable detection.

Web traffic reconstruction has been studied for ex-
ample in [9, 25, 39]. WebPatrol [9] uses a client hon-
eypot and a modified web proxy to collect and replay
web-based malware scenarios. Unlike WebPatrol, Web-
Witness is not limited to drive-by downloads invoked
through client honeypots and can provide context to
drive-by and social engineering attacks on real users ob-
served on live networks. ReSurf [39] uses the referrer
header to build graphs of related HTTP transactions to
reconstruct web-surfing activities. As discussed in this
paper and evaluated in [25], this approach is very limited
especially in reconstructing the entire download path of
a malicious executable. Lastly, ClickMiner [25] recon-
structs user-browser interactions by replaying recorded
network traffic through an instrumented browser. Its
focus is on the user’s behavior that led to a webpage;
whereas, WebWitness identifies the cause and structure
of an attack that led to a malicious download.

7 Conclusion
We proposed a novel incident investigation system,
named WebWitness. Our system targets two main goals:
1) automatically trace back and label the chain of events
(e.g., visited web pages) preceding malware downloads,
to highlight how users reach attack pages on the web; and
2) leverage these automatically labeled in-the-wild mal-

ware download paths to better understand current attack
trends, and to develop more effective defenses.

We deployed WebWitness on a large academic net-
work for a period of 10 months, where we collected and
categorized thousands of live malware download paths.
An analysis of this labeled data allowed us to design a
new defense against drive-by downloads that rely on in-
jecting malicious content into (hacked) legitimate web
pages. For example, we show that on average by using
the results of WebWitness we can decrease the infection
rate of drive-by downloads based on malicious content
injection by almost 6 times, compared to existing URL
blacklisting approaches.
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