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Abstract

Recently, a new attack for poisoning the cache of Recur-
sive DNS (RDNS) resolvers was discovered and revealed
to the public. In response, major DNS vendors released a
patch to their software. However, the released patch does
not completely protect DNS servers from cache poisoning
attacks in a number of practical scenarios. DNSSEC seems
to offer a definitive solution to the vulnerabilities of the
DNS protocol, but unfortunately DNSSEC has not yet been
widely deployed.

In this paper, we propose Wild-card SECure DNS (WSEC
DNS), a novel solution to DNS cache poisoning attacks.
WSEC DNS relies on existing properties of the DNS pro-
tocol and is based on wild-card domain names. We show
that WSEC DNS is able to decrease the probability of suc-
cess of cache poisoning attacks by several orders of magni-
tude. That is, with WSEC DNS in place, an attacker has to
persistently run a cache poisoning attack for years, before
having a non-negligible chance of success. Furthermore,
WSEC DNS offers complete backward compatibility to DNS
servers that may for any reason decide not to implement it,
therefore allowing an incremental large-scale deployment.
Contrary to DNSSEC, WSEC DNS is deployable immedi-
ately because it does not have the technical and political
problems that have so far hampered a large-scale deploy-
ment of DNSSEC.

1 Introduction

The normal operation of the Domain Name System
(DNS) [21, 22] is vital for a dependable Internet. We trust
the DNS servers in our every day life to provide us with the
correct domain name to IP address mapping, so that we can
browse the Web, send emails, access our bank accounts, etc.
Even a partial disruption of DNS may have a catastrophic

impact on the Internet.
DNS queries are usually initiated by a stub-resolver

(e.g., a web browser) on a user’s machine, which depends
on a recursive DNS resolver (RDNS) for obtaining the IP
address (or other resources) related to a domain name. The
RDNS is responsible for directly contacting the authorita-
tive name servers on behalf or the stub-resolver, cache the
response for a given time to live (TTL), and forwards it back
to the stub-resolver. Since its introduction, DNS has been
found to be vulnerable to a number of attacks. In partic-
ular, cache poisoning attacks have been shown to be quite
feasible [25]. Poisoning attacks work by forcing an RDNS
to lookup a domain name (e.g., google.com), and then
sending forged DNS responses back to the RDNS before
the “real” valid response from an authoritative name server
arrives. Each DNS query contains a 16-bits-long transac-
tion ID (TXID) that allows the RDNS to distinguish valid
responses from bogus ones. Therefore, the attacker has to
“guess” the correct TXID in order for a forged response to
be accepted and stored in the cache. If the attack is success-
ful, the attacker can force the RDNS to resolve the targeted
domain name to a malicious IP, and to store the malicious
IP in the cache with a long TTL. As a consequence, the next
time a stub-resolver queries the RDNS for the same domain
name, it will also be redirected to the malicious IP (e.g.,
users of google.com may be redirected to a malicious
website that hosts malware or participates in information
theft). Recently Kaminsky [15] showed that a successful
cache poisoning attack may be accomplished in a matter of
seconds, by exploiting a flaw in the DNS protocol.

1.1 Previous Work

The Domain Name System Security Extensions
(DNSSEC) have been proposed as a solution to the
vulnerabilities of the DNS protocol, and in particular
to cache poisoning attacks. DNSSEC adds data origin



authentication and data integrity verification mechanisms
to DNS [2, 3, 4, 11]. The implementation and deployment
of DNSSEC would therefore provide a robust way of
protecting against DNS cache poisoning attacks (as well
as other attacks to the DNS) because all the responses are
signed and their authenticity can be verified. For example,
DNS cache poisoning attacks (as we know them today)
would not work because forged responses can be identified
and discarded. DNSSEC seems to be the panacea for the
vulnerabilities of DNS. Unfortunately, although DNSSEC
was proposed back in January 1997 [11], all these years
have not been enough for it to be adopted and deployed
in a large-scale. The reasons for this are controversial.
There seem to be problems related to both technological
and “political” issues. From the technological point of
view, probably the main obstacle so far has been the use of
a NSEC resource record that can allow zone enumeration.
This is viewed by many as a security problem for DNSSEC
and has only recently been solved with the introduction of
NSEC3 [18]. Furthermore, key management for DNSSEC
is fairly complex [17]. The main non-technical point of
controversy derives from questions such as, “who owns the
root name servers?”. This is an important question because
DNSSEC relies on a chain of trust that depends on signing
zones and sub-zones, with signing the root name servers
being the principal anchor of trust. Of course, different
nations around the world have different opinions about who
owns the root name servers and is, therefore, entitle to sign
their zones. It is not clear when these problems will be
solved, and at the moment the deployment of DNSSEC is
reduced to a small number of isolated islands of trust [24].

Because a large-scale deployment of DNSSEC may not
be realized in the near future, a few alternative techniques
for protecting against brute-force poisoning attacks have re-
cently been proposed [8, 14, 6, 13, 23]. These techniques
are based on the current DNS protocol, and work by in-
creasing the entropy of DNS queries in order to make forg-
ing a valid response more difficult. For example, UDP
source port randomization [14] was first proposed and im-
plemented by Bernstein in djbdns [5], and has been recently
implemented by other major RDNS vendors in response to
the Kaminsky’s attack [10]. In practice, whenever an RDNS
issues a DNS query, it selects the source UDP port1 from
which the query is sent at random. This technique signifi-
cantly increases the hardness of poisoning attacks because
now the attacker needs not only to guess the TXID, but
also to send the forged responses to the correct UDP port.
Unfortunately, UDP source port randomization may not be
effective in certain practical scenarios. A significant frac-
tion of RDNS resolvers around the Internet reside behind
a load-balancer or firewall devices that implement network

1Although DNS queries over TCP are possible, the vast majority of
queries are transmitted over UDP.

address and port translation (NAT/PAT). Many of these de-
vices perform some form of port translation that reduces the
randomness of the UDP source ports generated by RDNS
resolvers to a guessable (e.g., “round robin-like”) use of the
ports [10]. Such settings are not uncommon. For example,
Leonard et al. showed that 32% of RDNS resolvers in their
study use some sort of “hidden” forwarder [19]. A possi-
ble solution would be to move the RDNS in front of the
NAT/PAT, but this may not be always possible or easy to
do, depending on the specific network architecture or con-
figuration (for example, a change in the network architec-
ture may expose the RDNS to other kinds of attacks, beside
cache poisoning).

Dagon et al. [8] recently proposed the 0x20-bit encoding,
which uses a random combination of lower- and upper-case
letters to write domain name queries, and works indepen-
dently from the presence of NAT/PAT placed in front of
RDNS resolvers. Unfortunately, the amount of additional
entropy introduced by the 0x20-bit encoding is a function
of the length of the queried domain name. For example,
for short popular domain names like hp.com, hi5.com,
cnn.com, etc., the 0x20-bit encoding only adds 5 or 6 bits
of entropy2. This makes poisoning attacks a little harder,
but surely not infeasible, as we show in Section 3.5. Sev-
eral other popular domain names from the top 500 global
domains according to Alexa (alexa.com) contain even
less than 6 alphabetic characters that can be used for the
0x20-bit encoding (e.g., 163.com, 56.com, 126.com,
etc., for which 0x20-bit encoding offers only 3 additional
bits of entropy).

Bernstein recently proposed DNSCurve [6] as an alter-
native to DNSSEC. DNSCurve uses high-speed elliptic-
curve cryptography, and simplifies the key management
problem that affects DNSSEC. The main criticism against
DNSCurve comes from the fact that no detailed specifi-
cations have yet been written (e.g., in the form of Inter-
net drafts or RFCs), and no implementation is currently
available to the public. From the limited documentation
currently available DNSCurve seems superior to DNSSEC,
particularly in terms of key management, however, the latter
has been specified in complete detail in several RFCs [2, 3,
4, 11], and has been implemented by most DNS vendors and
thoroughly tested. Also, similar to DNSSEC, DNSCurve
still requires significant changes at the root and top-level-
domain (TLD) name servers and may therefore incur some
of the same “political” problems that have so far prevented a
large-scale deployment of DNSSEC. Earlier, Bernstein also
proposed a technique called DNS cookies [7], which makes

2It is worth noting that although these domain names are often queried
using the prefix www. (e.g., www.msn.com), which would add 3 more bits
of entropy, Kaminsky-style attacks [15] can be initiated by queries to non-
existent domain names of the type 000.hp.com, 001.hp.com, etc., which do
not allow 0x20 to introduce any additional entropy compared to the base
domain.



use of wildcards and TXT records to fetch signed IP ad-
dresses. It is worth noting that although our WSEC DNS
solution (discussed below) makes use of wildcard and TXT
records, the technique we propose is very different from
DNS cookies. We use TXT records only to verify if a zone is
or is not WSEC-enabled, and use wildcard CNAME records
for resolving DNS queries in a secure way. We do not pro-
pose to sign the response, instead we propose to use a one-
time random number (or nonce) for each query to distin-
guish valid answers from bogus ones. Furthermore, to the
best of our knowledge, no detailed specifications or pub-
lications exist for DNS cookies, and no implementation or
experimental results are publicly available.

Beside the UDP source port randomization patch [10],
0x20-bit encoding [8], and Berstain’s work [6, 7], while
working on WSEC DNS we came across the description
of an extended query ID (XQID) [13], which shares some
similarities with WSEC DNS. It is worth noting, though,
that we developed WSEC DNS independently and before
the XQID ideas was made public. Also, we would like to
emphasize the fact that to the best of our knowledge XQID
is only an idea which has not been backed by any scientific
study. The impact of XQID on the increase of DNS traffic
and latency is not discussed, and no experimental result is
provided. Also, contrary to our work, in XQID [13] no al-
gorithm to avoid changes at the root and TLD name servers
level is discussed. We discuss XQID and other additional
“non-published” related work in Appendix A

1.2 Our contribution: WSEC DNS

In this paper we propose a novel solution to brute-force
DNS cache poisoning attacks that is based on increasing
the entropy of DNS queries to the point that cache poison-
ing attacks become practically infeasible. Towards this end,
we present Wildcard SECure (WSEC) DNS, a new DNS
query process that leverages existing properties of the DNS
protocol. Our solution takes advantage of the definition of
wildcard domain names given in RFC 1034 [21] and RFC
4592 [20], and of TXT resource records [22]. In practice,
the basic idea is to wisely use wildcard domain names so
that we can prepend a random string to the queried do-
main names and still obtain a correct answer. These ran-
dom strings have the effect of significantly increasing the
entropy of DNS queries, thus making valid answers difficult
to guess. Contrary to 0x20-bit encoding [8], WSEC DNS
protects short domain names (e.g., hp.com, hi5.com,
cnn.com, etc.) as well as longer ones. Also, WSEC DNS
protects against poisoning attacks independently from UDP
source port randomization. Therefore, even in those cases
when port randomization is made ineffective by the pres-
ence of devices such as load balancers or firewalls that per-
form port translation without preserving randomness [10],
WSEC DNS still makes brute-force cache poisoning attacks

practically infeasible.
An important advantage of our approach is that DNS op-

erators are not obligated to implement our solution, because
WSEC DNS guarantees complete backward compatibility
with current name server configurations. However, recur-
sive DNS (RDNS) resolvers that intend to take advantage of
the security benefits of WSEC DNS must implement some
new functionalities. On the other hand, collaborating DNS
operators who want to protect their domain names against
possible cache poisoning must be willing to make simple
configuration changes to their name servers, by editing their
configuration zone-files according to the recommendations
reported in this paper.

WSEC DNS provides a way to protect RDNS resolvers
from brute-force cache poisoning attacks, including Kamin-
sky’s attack [15]. We argue this is very important, con-
sidering the serious consequences of successful DNS cache
poisoning, and the uncertainty around when DNSSEC will
be widely adopted. Unlike DNSSEC, WSEC DNS does
not need support from political institutions (which are in-
volved in the process of signing the root and top level do-
main name servers for DNSSEC). Rather, WSEC DNS only
requires collaboration between administrators of RDNS re-
solvers and authoritative name servers, making incremental
deployment possible due to its backward compatibility. We
argue that support of incremental deployment is a very im-
portant property, because updating all the DNS resolvers
and name servers around the Internet at one time is not fea-
sible. We will show that our approach meets all of the fol-
lowing requirements:
• No change to the protocol/format of DNS queries and

responses;
• No change at the root and top level domain (TLD)

name servers;
• No software change for authoritative name servers;
• Voluntary collaboration of authoritative name servers;
• Complete backward compatibility with current name

servers’ configurations;
• Support of incremental deployment;
• Independence from the architecture/configuration of

the network where RDNS reside;
• Brute-force cache poisoning attacks are practically in-

feasible;
• Transparent to users.

2 Background and Threat Model

In this section we provide a brief description of DNS
cache poisoning attacks. Due to space constraints we are
not able to provide a complete introduction to the DNS pro-
tocol here. We therefore assume the reader is already fa-
miliar with DNS concepts and terminologies. If this is not
the case, we recommend the reader to refer to [21, 22] for



Figure 1: DNS Query Resolution.

Figure 2: Example of DNS Cache Poisoning Attack Scenario.
Interactions with root and TLD nameservers are omitted for
simplicity.

Figure 3: Example of domain name space and zone cuts (identified
by dashed curves).

further details.

2.1 DNS Concepts and Terminology

The domain name space is structured like a tree. Each
node and leaf on the tree corresponds to a resource set [21].
A domain name identifies a node in the tree. For exam-
ple, the domain name F.D.B.A. identifies the path from
the root “.” to a node F in the tree (see Figure 3). It is
worth noting that two brother nodes cannot share the same
name, but a child node can have the same name as its parent.
The set of resource information associated with a particular
name is composed of resource records (RRs). For exam-
ple, F.D.B.A. may be associated with one or more RRs
of type A containing an address in IPv4 format, one RRs of
type TXT containing a text description of the domain name,
etc. The domain name related to a given RR is called the
owner of that RR [21]. The depth of a node in the tree is
sometimes referred to as domain level. For example, A. is
a top-level domain (TLD), B.A. is a second-level domain
(2LD), D.B.A. is a third-level domain (3LD), and so on.

Zone Authority. The information related to the do-
main name space is stored in a distributed domain name
database. The domain name database is partitioned by
“cuts” made in the name space between adjacent nodes. Af-
ter all cuts are made, each group of connected nodes repre-
sent a separate zone [21]. Each zone has at least one node,
and hence a domain name, for which it is authoritative. For
each zone, a node which is closer to the root than any other
node in the zone can be identified. The name of this node
is often used to identify the zone. For example, assume
there is a zone cut in the path betwen nodes B and A in
the path F.D.B.A. (see Figure 3). In this case, the zone
of F.D.B.A. is usually identified with the domain name
B.A. (the last “.”, which represets the root, is often omit-
ted). The RRs of the nodes of a given zone are stored in
one or more name servers. A given name server will typ-
ically support one or more zones. A name server that has
complete knowledge about a zone (i.e., stores the RRs for
all the nodes in the zone) is said to have authority on that
zone [21]. A name server can delegate the authority over
part of a (sub-)zone to another nameserver.

Wildcard Domain Names. A wildcard domain name is
a domain name having its initial (i.e., leftmost or least
significant) label be the “*” character [20]. For exam-
ple *.www.example.com is a wildcard domain, where
“*” is interpreted as “any valid combination of charac-
ters”. On the other hand, www.*.example.com is not
a wildcard domain (the “*” between www and example
is not interpreted as “any valid combination of characters”,
but represents the single “*” character itself). Assume
the name server that has authority on the example.com
zone is configured to accept wildcard domains of the kind
*.www.example.com and return the IP address (if a RR
of type A is queried) 208.77.188.166. In this case, if
we query for the IP address <random_string>.www.
example.com, this domain will match the wildcard do-
main *.www.example.com, and the ANS will respond
with 208.77.188.166.

2.2 DNS Query Resolution

DNS queries are usually initiated by a stub-resolver
(e.g., a web browser) on a user’s machine, which relies on
a recursive DNS resolver (RDNS) for obtaining a set of
resource records (RRs) owned by a given domain name.
The RDNS is responsible for directly contacting the au-
thoritative name servers on behalf or the stub-resolver, ob-
tain the requested information, and froward it back to the
stub-resolver. The RDNS is also responsible for caching
the obtained information for a certain period of time, called
Time To Live (TTL), so that the if the same or another stub-
resolver queries again for the same information within the



TTL time window, the RDNS will not need to contact the
authoritative name servers (thus obviously improving effi-
ciency).

Consider the scenario in Figure 1. The stub-resolver
requests the IP address of www.example.com to the
RDNS. First, the RDNS checks its local cache to see if it
already knows the answer, and if the cached information is
not expired. If the requested information is not in the cache,
the RDNS will try to retrieve the IP address of the authori-
tative name servers (ANS) for www.example.com. If no
ANS is found in the cache, the RDNS will look for the IP
of the ANS for example.com, then the ASN for the top
level domain (TLD) com, and finally the root name servers.
Assume only the IP of the root name servers is in the cache.
At this point the RDNS will ask the root name servers “what
is the IP of www.example.com?”. The root name servers
will respond with “I don’t know, but you can ask the name
server which have authority on the com zone. Here are their
IP addresses”. The RDNS will then contact the com name
servers and ask “what is the IP of www.example.com?”.
Again, the com name servers will not know the answer
and will respond with “ask the name server which have au-
thority on the example.com zone. Here are their IP ad-
dresses”. Finally, the RDNS will contact the ANS of the
zone example.com and obtain the requested IP address.

During the process of discovering the IP address of
www.example.com, the RDNS will store all the infor-
mation it receives into its local cache. This includes the IP
addresses of the ANSs for the com zone, the IP addresses
of the ANSs for the example.com zone, and the IP ad-
dress of www.example.com. Each cache entry will have
an associated Time To Live (TTL), after which the cache
entry expires and the RDNS needs to query for that infor-
mation again. Now, assume after a while another stub-
resolver queries for the IP address of www.example.
com. If the cache entry that contains the IP address of
www.example.com has not expired, the RDNS will im-
mediately respond without the need to contact any external
ANS. On the other hand, if the cache entry that stored the
IP address of www.example.com has expired, the RDNS
needs to reinitiate an interactive query process. At this
point, the RDNS knows that it can directly ask that ques-
tion to the ANS for the example.com, because the RDNS
has the IP address of that ANS in the local cache (assum-
ing the related cache entry has not expired, yet). Therefore,
the RDNS does not need to contact the root and com name
servers.

2.3 DNS Cache Poisoning

DNS queries are transmitted over UDP1. Each DNS
query contains the following information: 1) a transaction
ID (TXID); 2) the queried domain name; 3) and the re-
quested resource record (RR) class and type. In order to

identify a valid answer to a DNS query, the following infor-
mation should be verified: a) the response packet needs to
come from the same IP the query was sent to; b) the source
UDP port used to send the query must match the port on
which the response is received; c) the TXID in the answer
must match the TXID in the response; d) the domain name
reported in the question section of the response must match
the queried domain name. We assume the transaction ID
(TXID) and UDP source port used by the RDNS when is-
suing DNS queries are chosen at random.

However, it is worth noting that until recently the UDP
source port used by popular RDNS software like BIND 9
and Windows DNS server was easy to predict [16], and
even the TXTID was not very well randomized [16, 25].
DNS cache poisoning attacks exploit the low entropy of
DNS queries (due mainly to a poor randomization of TXID
and UDP source port), which makes valid answers pre-
dictable [16, 25].

A traditional brute-force DNS cache poisoning attack
scenario is as follows (see Figure 2). Assume an attacker
tries to poison the IP address of www.example.com. The
attacker first sends a query for www.example.com to the
RDNS, thus forcing it to initiate the recursive query pro-
cess and interact with the authoritative name servers. If the
attacker is able to guess the TXID and source UDP port,
and send well-crafted (spoofed) response packets to the
RDNS before the legitimate answer from the real author-
itative name server is received, the DNS poisoning attack
will be successful. This attack works because the RDNS
will accept the first valid answer it receives. As a result, it
will store the IP address (or other RR information) that the
attacker sent in the positive cache for the entire time to live
(TTL) chosen by the attacker. The consequence is that all
clients using that particular RDNS server will subsequently
receive the attacker’s IP address every time they query for
www.example.com. For example, every time the users
want to visit a web page on that domain, they may be redi-
rected to the attacker’s malicious website. This may expose
the users to a variety of attacks such as information theft
or malware infection. If the attacker is not able to forge
a valid answer before the real valid answer arrives at the
RDNS, the attacker will need to wait until the related gen-
uine cache entry for the IP address of www.example.com
expires before retrying.

2.4 Kaminsky’s Attack

Recently, Dan Kaminsky discovered a flaw in the DNS
protocol [15] that allows an attacker to perform successful
cache poisoning attacks with little effort, compared to the
traditional poisoning attack.

Assume an attacker wants to poison the cache of the
RDNS for www.example.com zone. Kaminsky’s attack
works as follows:



1. We assume the attacker has control of a stub-resolver
behind the RDNS (this is not a strong assumption if
we consider that simply soliciting a legitimate user
to visit a malicious web-page may turn the browser
into the perfect stub-resolver under control of the at-
tacker). The attacker’s stub-resolver initiates a query
for the IP address of a non-existent domain, say 001.
example.com.

2. The RDNS will therefore contact one of the authorita-
tive name servers for the zone example.com. With-
out loss of generality, assume there is only one name
server that has authority on the example.com zone,
say a.iana-servers.net., and that the IP ad-
dress for such name server is 192.0.34.43.

3. At this point the attacker will send lots of spoofed
responses to the RDNS, which will pretend to come
from 192.0.34.43 and try to guess the correct
transaction ID and UDP port. The attacker’s spoofed
responses all say “I do not know the IP of 001.
example.com, but I can tell you who can give it
to you”. The “who can give it to you” translates into
an authority section of the response containing www.
example.com, and the additional section containing
6.6.6.6 as a “glue” record [22], where 6.6.6.6 is
an IP address under control of the attacker.

4. The RDNS will update its cache with such informa-
tion, namely the fact that www.example.com has IP
address 6.6.6.6, and therefore the attack succeeds.

[1] describes a variant of the Kaminsky’s attack that
makes use of CNAME RRs. The greatest advantage of
Kaminsky-style attacks is that if the poisoning attack does
not succeed at the first trial, the attacker can immediately
retry querying for another non-existent domain in the same
zone, say 002.example.com, 003.example.com,
etc., without need to wait for the TTL of the domain the at-
tacker wants to poisoning to expire. This greatly improves
the probability of success for the attacker, as we show in the
analysis presented in Section 3.5.

It is important to note that Kaminsky’s attack is another
way of performing brute-force cache poisoning against the
RDNS. Unlike “traditional” poisoning attacks, the greatest
advantage of Kaminsky’s attack is that if the poisoning at-
tack does not succeed at the first trial, the attacker can im-
mediately retry, without the need to wait for the TTL of the
genuine cache entry to expire. This greatly improves the
probability of success of the attack in a given time window,
as we show in Section 3.5.

2.5 Threat Model

In this work we address brute-force DNS cache poison-
ing attacks, both traditional and Kaminsky’s style. Similarly

to previous work [14, 8], we assume the attacker does not
have visibility of the DNS traffic flowing from the RDNS to
the legitimate authoritative name server (if the attacker had
such visibility there would be no need to launch traditional
or Kaminsky’s style poisoning attacks, because there would
be nothing to guess and only one forged packet would be
sufficient to poison the cache). At the same time, we as-
sume the attacker is able to forge DNS responses and send
them to the RDNS using a very large bandwidth

3 WSEC DNS

RFC 1034 requires that valid responses to DNS queries
must report a copy of the queried domain name in the ques-
tion section. We propose to take advantage of this simple
property of the DNS protocol, and to leverage the use of
wildcard domain names as defined in RFC 1034 and RFC
4592 to increase the entropy of DNS queries in order to
make brute-force cache poisoning attacks practically infea-
sible. A wildcard domain name is a domain name having
its initial (i.e., leftmost or least significant) label be the “*”
character [20]. For example *.www.example.com is
a wildcard domain, where “*” is interpreted as “any valid
combination of characters”.

3.1 Configuration Requirements

WSEC DNS requires no software change for name
servers. However, DNS operators who want to benefit from
the security properties of the WSEC DNS query process
must apply simple configuration changes to their zone-files.
A zone-file is a configuration file used by a name server
to load information about a zone3 (e.g., example.com),
and its subdomains (e.g., www.example.com, mail.
example.com, etc.). The information carried by zone-
files is written in terms of resource records (RR). For ex-
ample, RRs of type A are used to report IP addresses in
IPv4 format, CNAME RRs are used for name aliasing, TXT
records are used to carry descriptive information about a
domain name.

Figure 4 shows an example zone-file that describes the
content (i.e., sub-domains and resource records) of the zone
example.com4. Consider the configuration line:
www IN A 10.0.1.6
This tells the name server that the domain name www.
example.com owns the IP address 10.0.0.6.

3a zone can be defined as a portion, or sub-tree, of the tree-structured
domain name database [21].

4Notice that the configuration lines marked with the comment “;
WSEC” in Figure 4 are the ones that have been added to the zone-file in
order to enable WSEC DNS queries. It is also worth notice that the ad-
ditional configuration lines needed in order to enable WSEC DNS queries
can be generated automatically by writing a simple script which takes the
original zone file in input and follows the steps described above to produce
the new WSEC-compliant zone file.



Figure 4: Example of WSEC-compliant zone file written using the
syntax for BIND 9.5 (www.isc.org) name servers.

In order to enable WSEC DNS queries for a given zone
(e.g., the zone example.com and all its sub-domains),
the following modifications need to be applied to its related
zone-file:

a) Add two TXT resource records (RRs) that contain in-
formation about whether WSEC queries are supported
or not for the domains in that zone. For example, in
Figure 4 the lines:

* 86400 IN TXT |wsecdns=enabled|
_test_._wsecdns_ 86400 IN TXT |wsecdns=enabled|

have been added for this purpose. The string
|wsecdns=enabled| is used to communicate the
fact that the zone example.com supports WSEC
DNS queries (the “ ” characters in _test_._
wsecdns_ are used to avoid collisions with other pre-
existent names in the zone).

b) Two CNAME RRs are introduced for each non-wildcard
domain name in the zone,. For example (see Figure 4),
if the original zone-file contains an RR of any type for
www.example.com, the WSEC-compliant version
of the zone-file must contain two additional lines of
the type:

*._wsecdns_.www IN CNAME www

*._test_.wsecdns_.www IN CNAME _test_.wsecdns_

which say that *._wsecdns_.www.example.
com is an alias for www.example.com, and

Figure 5: Simplified view of WSEC DNS query process.

*._test_._wsecdns_.www.example.com is
an alias for _test_._wsecdns_.example.com.
We informally refer to these configuration lines as
wildcard CNAME records.

c) A TXT RR is introduced, for each wildcard domain,
excluding wildcard CNAME RRs. For example, in Fig-
ure 4 we introduced the following line *.web IN
TXT "|wsecdns=enabled|" because a wildcard
A RR for *.web.example.com was present in the
original zone-file. We informally refer to these config-
uration lines as wildcard TXT records.

3.2 The WSEC DNS Query Process

A simplified view of the WSEC DNS query pro-
cess is represented in Figure 5. Assume a host queries
for the RR of type A (i.e., the IP address) owned by
www.example.com. At this point the RDNS gener-
ates a random alphanumeric string <rand> of length
N , and queries for the TXT RR of <rand>._test_._
wsecdns_.www.example.com. This query is used
to perform a sort of “handshake” with the authoritative
name server (ANS) for the domains in the example.
com zone. If the ANS for the zone example.com has
enabled WSEC queries (i.e., the zone-file for the zone
example.com on the ANS respects the configuration re-
quirements discussed in Section 3.1), it will report the fact
that <rand>._test_._wsecdns_.www.example.
com is an alias for _test_._wsecdns_.example.
com and that a TXT RR exists for this domain, which is
equal to the string "|wsecdns=enabled|". At this
point, WSEC DNS queries are considered enabled, and in-
stead of querying for www.example.com A?5, the RDNS
will query for <rand>._wsecdns_.www.example.
com A?, i.e., the original query from the host to the RDNS
plus the string <rand>._wsecdns_. prepended.

Since the ANS is WSEC-enabled, this query will
match the wildcard “*. wsecdns .www IN CNAME
www” (see zone-file in Figure 4), which says that *.
_wsecdns_.www.example.com is an alias for www.
example.com. Because the ANS is authoritative for

5For the sake of simplicity, in the following we will use the notation
<domain name> <Resource Record Type>? to mean “query
for the resource records of type <Resource Record Type> owned
by <domain name>”. Resource Records of type A are used to translate
a domain name into a set of IPv4 addresses [22].



www.example.com, according to RFC 1034 [21] the re-
sponse from the ANS (in this example) will include: 1)
the queried domain name <rand>._wsecdns_.www.
example.com in the question section; 2) an CNAME RR
that says that <rand>._wsecdns_.www.example.
com is an alias for www.example.com; and 3) an A
RR that reports the IP address of www.example.com,
which is the information originally requested by the stub-
resolver. The RDNS will first make sure that the do-
main name in the question section of the response actually
matches the queried domain name (including the random
prefix <rand>). If a mismatch occurs, the response will be
discarded. Finally, the RDNS will normalize the answer re-
ceived from the ANS by cutting the CNAME entry that starts
with <rand>._wsecdns_. from the response, caching
the normalized response, and forwarding it to the host (a
more detailed description of the WSEC response normal-
ization process is reported in the Appendix).

It is worth noting that corporate networks often use
chains of DNS resolvers and forwarders. In order to avoid
multiple WSEC prefixes to be added to a DNS query, the
simplest way to deploy WSEC DNS is to only enable
WSEC queries at the last RDNS resolver (i.e., the clos-
est one to the edge of the network). In some corporate
networks, a DNS forwarder with caching abilities may be
present in front of one or more RDNS servers. Therefore,
when adding wildcard CNAME RRs to a zone in order to
enable WSEC queries, ANS administrators should set the
TTL of those records to zero. This will prevent the for-
warders from caching wildcard CNAME RRs used in WSEC
queries. Because of the uniqueness of the WSEC random
prefix, caching such RRs is useless, and may cause an un-
necessary growth of the forwarder’s cache.

It is easy to see that the basic version of the WSEC DNS
query process described above has the side effect of dou-
bling the DNS traffic from the RDNS to the name servers.
We will show in Section 3.3 that we can make use of the
same cache system used by “standard” RDNS implemen-
tations in order to greatly reduce the amount of additional
traffic resulting from the WSEC DNS query process.

Security Benefits WSEC DNS protects the RDNS’s
cache from poisoning attacks against the domain names
(e.g., www.example.com) in WSEC-enabled zones (e.g.,
example.com), including Kaminsky’s attack. This is be-
cause the attacker is now required to make a much bigger
effort to try to guess the random string <rand> used as
prefix in WSEC queries, in addition to the random trans-
action ID (and possibly source UDP port). If the attacker
is not able to forge packets with the correct <rand> com-
bination and send them to the RDNS before the genuine
authoritative response arrives from the ANS, the attack will
fail. This holds true for all the steps of the WSEC DNS

query process, regardless of the requested type of RR in
the original queries from the hosts, because a new random
prefix <rand> is issued with every query sent by a WSEC-
compliant RDNS to the name servers, including during the
interaction with the root and TLD name servers. We will
show in Section 3.5 that using uniformly random strings
of only five alphanumeric characters, WSEC DNS makes
Kaminsky’s attack practically infeasible even for very mo-
tivated and powerful attackers.

Transparency Property It is easy to see that the WSEC
DNS query process is completely transparent to the host,
thanks to the WSEC response normalization algorithm de-
scribed above. The user will always see the correct response
to the original query as if the RDNS was using the “stan-
dard” DNS query process, instead of the WSEC DNS pro-
cess. It is worth noting that queries for resource records
other than A, (e.g., AAAA, CNAME, MX, TXT, NS, etc.) can
be handled by WSEC DNS. The WSEC DNS query pro-
cess works independently from the RR type requested in
the original query from the host, thanks to the use of CNAME
wildcards added in order to make a zone WSEC-enabled as
described in Section 3.1.

Backward Compatibility In the cases when a zone
is not WSEC-enabled, the ANS will answer to the
WSEC “handshake” (i.e., the first query <rand>._
test_._wsecdns_.www.example.com TXT?) with
NXDOMAIN (non-existent), or possibly with a string that
does not contain "|wsecdns=enabled|". In this case
the RDNS will simply issue the second query using the orig-
inal query www.example.com A? from the host (with-
out the WSEC random prefix), and forward the response to
the host. A negative WSEC cache is used to avoid to retry
over and over a WSEC “handshake” with zones that are not
WSEC-enabled, as explained in Section 3.3. Only after the
negative WSEC cache entry expires (e.g., after one day), the
RDNS will retry the WSEC handshake. The backward com-
patibility allows WSEC DNS to be deployed incrementally,
thus making our solution practical.

WSEC TXT TXT resource records were originally meant
for storing descriptive text about domain names [22], but
are now widely used to carry information related to the
Sender Policy Framework (SPF) [26] to mitigate the spam
emails phenomenon. We would like to emphasize the fact
that wildcard TXT records introduced for enabling WSEC
DNS queries do not interfere with either SPF or simple de-
scriptive text. Because of limited space, we discuss the de-
tails of how WSEC DNS and SPF can easily coexist in Ap-
pendix B. Furthermore, in Appendix B we discuss how the
WSEC DNS query process can handle those corner cases
in which introducing wildcard TXT RR for enabling WSEC



DNS queries may create conflicts with preexisting wildcard
CNAME RR in a zone-file.

3.3 Positive and Negative WSEC Caching

Implementing the WSEC DNS query process without a
WSEC caching system would have the side effect of dou-
bling the volume of DNS traffic on the Internet and the
average latency between users’ DNS queries and the re-
lated answer, due to the fact that the “handshake” between
the RDNS and ANS would have to be repeated for each
query. In order to solve these problems, we can take ad-
vantage of the concepts of positive and negative cache, as
explained in the following. The RDNS resolvers that intend
to use WSEC DNS must implement a positive and nega-
tive cache that stores information about the zones that are
or are not WSEC-enabled (i.e., whose zone-file does or does
not follow the configuration requirements described in Sec-
tion 3.1), respectively. We will describe the WSEC positive
cache first, and afterwards we will describe the WSEC neg-
ative cache. For the sake of simplicity, we assume here that
if a certain zone is configured according to WSEC specifi-
cations, all its sub-zones will also be configured to support
WSEC DNS. This restriction can be easily relaxed, as ex-
plained in Appendix C.

An entry of the WSEC positive cache should contain the
following information: 1) a zone name; and 2) a time to live
(TTL), after which a TXT query for the WSEC handshake
needs to be reissued. This information is conveyed by a
TXT resource record such as:
_test_._wsecdns_ 86400 IN TXT "|wsecdns=enabled|"

for the zone we are considering, as we explained in
Section 3.1. For example, the zone example.com
in Figure 4 has a TXT record of this kind, with a
TTL in seconds equal to 86400 seconds (i.e. one
day). Therefore, the WSEC positive cache entry would
be “example.com wsecdns=enabled 86400”.
Once a zone has been stored in the positive WSEC cache,
the RDNS will not perform the WSEC handshake for do-
mains in that zone, until the TTL of the positive WSEC
cache expires. Therefore, assuming the zone example.
com is in the positive WSEC cache, the next time a host
queries for a domain in that zone, say mail.example.
com A?, because example.com is in the positive WSEC
cache the only query issued by the RDNS will look
like <rand>._wsecdns_.mail.example.com A?.
Therefore, the positive cache limits the increase in DNS
traffic due to the WSEC handshake (see step 2 in Figure 5),
because the WSEC handshake has to be attempted only
once a day for a given zone.

Because WSEC DNS does not require every authori-
tative name server (ANS) on the Internet and its zones
to be WSEC-enabled (some ANSs may decide not to in-
crease protection of their domains against poisoning at-

tacks at the cost of editing their zone-files), some zones
may never be present in the positive WSEC cache. There-
fore, this would cause the RDNS to initiate the WSEC
hadshake using TXT queries, thus doubling the traffic to-
wards non-WSEC-enabled ANS. To avoid this problem,
RDNS resolvers that implement WSEC DNS are required
to also implement a negative WSEC cache. Each entry
in the WSEC negative cache should contain two pieces
of information: 1) the name of the non-WSEC-enabled
zone; and 2) the negative entry TTL. For example, as-
sume the zone vulnerabledns.com decides not to fol-
low the WSEC DNS configuration recommendations de-
scribed in Section 3.1. The first time a user queries
for a domain in that zone, say www.vulnerabledns.
com, the RDNS will issue a <rand>._test_._
wsecdns_.www.vulnerabledns.com TXT? query,
in order to perform the WSEC handshake for the
zone. This query will not match any entry in the
zone-file for vulnerabledns.com, and the string
|wsecdns=enabled| will not be received by the
RDNS. Therefore, the RDNS will store the zone
vulnerabledns.com in the negative WSEC cache
(only if the RDNS received an authoritative response
that did not come directly from a root or TLD name
server, otherwise it means that the domain is not reg-
istered and the RDNS will simply returned NXDOMAIN
to the stub-resolver), and will simply issue the original
www.vulnerabledns.com A? query received from the
host. At this point, the RDNS will not issue a WSEC
handshake (a TXT query) towards any domain in the
vulnerabledns.com zone until the TTL of the nega-
tive cache entry expires. The TTL for the entries in the
negative WSEC cache is a configuration parameter for the
RDNS, and it is recommended to be at least several hours.

3.4 Protecting TLD NS Entries

When querying for a domain name in a WSEC-enabled
zone, besides protecting the RDNS’s cache from poisoning
attacks against the queried domain, e.g., www.example.
com, WSEC DNS naturally protects the RDNS from poi-
soning of the top level domain (TLD) name servers. The
reason is that the random WSEC prefix (see Section 3.2)
will always be present during the query resolution process
for www.example.com, including during the interaction
between the RDNS and the root and TLD name servers
for discovering the authoritative name server (ANS) for the
queried domain. This protection mechanism does not re-
quire the root and TLD name servers to explicitly enable
WSEC DNS queries themselves.

An attacker may also try to poison the IP address of
TLD name servers in the RDNS’s cache directly. As an
example, assume the attacker intends to poison the cache
of an RDNS by injecting a malicious address for the name



server A.GTLD-SERVERS.NET, which is a delegation-
only name server for the .com TLD. We would like to em-
phasize the fact that if the zone GTLD-SERVERS.NETwas
WSEC-enabled, the attack would not succeed, because the
queries initiated by the attacker would be “protected” by the
WSEC prefix <rand>._wsecdns_.. However, we un-
derstand that requiring changes in the configuration of TLD
name servers may encounter the resistance of the Internet
community, given the special role of such servers (requiring
changes at the root and TLD name servers is one of the main
reasons that have kept DNSSEC from being deployed and
adopted on a large-scale). However, it is possible to protect
TLD name servers from poisoning with neither configura-
tion nor software changes at the root and TLD name servers
levels. The solution we propose involves the application of
a secure TLD cache update policy for RDNS resolvers in
combination with the use of WSEC random prefixes. For
example, even if the zone GTLD-SERVERS.NET is not
WSEC-enabled, we can defend A.GTLD-SERVERS.NET
by noticing that the RDNS’s “standard” cache will contain
two pieces of information about the domains in that zone:
1) A.GTLD-SERVERS.NET is a name servers for the com
TLD; and 2) A.GTLD-SERVERS.NET’s IP address.

As legitimate changes in the IP address of TLD name
servers are very rare, if the IP address of a TLD name
server in the RDNS’s cache is about to be overwritten
with a new address (e.g., because of a poisoning attack),
the RDNS can simply verify the received information by
performing an additional query to one of the root name
servers6. For example, before overwriting the IP ad-
dress of A.GTLD-SERVERS.NET in the cache, the RDNS
will query one of the root name servers for <rand>._
wsecdns_.com. At this point the root server will respond
with the list of name servers that have authority over the
com zone [21, 22], including A.GTLD-SERVERS.NET
and its correct IP address (as a “glue” record [21, 22]). The
RDNS will then compare this IP to the attacker’s IP, notice
the difference, and therefore discard the attacker’s attempt
to overwrite the cache entry for A.GTLD-SERVERS.NET.
This verification process adds very little DNS traffic be-
cause of the fact that legitimate events that overwrite the
IP address of TLD name servers in the RDNS’s cache are
very rare events, and also the number of different TLD name
servers is small. Therefore, unless under poisoning attack,
the RDNS will need to initiate a verification process only in
rare cases. It is worth noting that given the presence of the
<rand> string in the TLD verification query, poisoning a
TLD name server now becomes practically infeasible (see

6The list of domain names and IP addresses for the root name servers
are hardcoded into the RDNS software [21], and should be updated only by
updating the RDNS software, its local configuration, or by very infrequent
queries (e.g., once every several weeks) that cannot be forced/initiated by
the attacker. Therefore, a poisoning attack involving the root name servers
should always fail.

Section 3.5). This means that WSEC-enabled zones will be
protected from poisoning attacks along the entire resolution
path without requiring any configuration change at the root
and TLD name servers.

3.5 Robustness to Poisoning Attacks

Let Γx be the cardinality of the search space intro-
duced by technique x. In the following we will assume
ΓTXID = 216 (perfect randomization of the TXID), and
Γport = 216 − 1024 (i.e., perfect randomization of all
the ports excluding the first usually reserved 1024 ports).
For the 0x20-bit encoding we consider three cases, namely
Γ0x20 = 26 for short domain names containing 6 letters
(e.g., cnn.com, aol.com, etc.), Γ0x20 = 212 because [8]
reports 12 as the average length of domain names, and
Γ0x20 = 216. Also, we assume WSEC DNS queries are
performed using random alphanumeric prefixes of length
5, thus ΓWSEC = 365 (WSEC random strings consists of
combinations of lower-case letters and digits). Similar to
previous work [14], in our analysis we take into account
a round-trip-time (RTT) between the RDNS and an ANS
equal to ∆T = 100ms, and the number of available ANS
for a given domain ΓANS = 4 (we found that “popular”
domain names like cnn.com, aol.com, google.com,
etc., use 4 ANS). For the attack scenario, we consider an
attacker who is able to launch a brute-force DNS cache
poisoning attack using Kaminsky’s technique [15]. We as-
sumed the forged responses are l = 80 bytes long (sim-
ilar to [14]). Also, we consider three possible scenarios,
in which the attacker has a total available network band-
width BW of 1Mbps, 10Mbps and 100Mbps (higher attack
BW may cause a denial of service on the RDNS, instead
of poisoning the cache, in many practical scenarios). Fur-
thermore, we assume the attacker launches an instance of
the attack using its entire bandwidth to “flood” the RDNS
with forged responses within the ∆T = 100ms time. If the
first round is not successful, the attacker immediately retries
with a new instance of the attack. Therefore, the attack fre-
quency is fattack = ∆T−1 = 1/100ms (i.e., the attacker
repeats Kaminsky’s attack every 100ms)7.

Suppose the attacker is able to send M spoofed DNS
answers to the RDNS server within the RTT, after which
the RDNS receives the answer from the real authoritative
name server. The number M depends on the bandwidth
BW available to the attacker, the RTT ∆T and the size l of
the response packets. The probability of successful cache

7This is different from “traditional” poisoning attacks, in which case
the attacker would have to wait for the entire TTL of the domain name
to be poisoned (e.g., the TTL of the targeted domain name may be sev-
eral minutes, or even hours). It is intuitive that Kaminsky’s attack greatly
increases the chances of successful attack within a given time window.
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Figure 6: Effect of port derandomization due to NAT/PAT devices
on the probability of success for Kaminsky’s attack, and compari-
son with WSEC DNS. This case represents a scenario in which the
RDNS’s source port is made easily predictable (e.g., static, sequen-
tial, or round robin).
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Figure 7: Effect of port randomization on probability of success for
Kaminsky’s attack, and comparison with WSEC DNS.

poisoning for one attack attempt can be computed as [12]

psucc = 1−pfail = 1−
M−1∏
i=0

(
1− 1

Γ− i

)
, Γ > M −1

(1)
assuming the forged responses are generated without repeti-
tions8. Equation (1) represents the probability of success of
a single instance of the attack. Γ represents the overall car-
dinality of the search space. The total probability of success
after launching n instances of the attack can be computed as
Psucc = 1− (1− psucc)n.

Figure 7 reports how the probability Psucc varies for
growing attack durations (i.e., growing n), considering an
attacker who has access to a bandwidth of BW = 10Mbps.
Figure 7 considers the case in which port randomization
can be effectively used, whereas Table 1 show the effect
of port derandomization due to devices such as firewalls,

8More precisely, Equation (1) should be psucc = 1 −QM−1
i=0

“
1− q

Γ−i

”
[12], but in the following we assume the RDNS im-

plements defense mechanisms against birthday attacks [25] (like most
RDNS software), and therefore we set q = 1.

BW = 1Mbps BW = 10Mbps BW = 100Mbps
TXID 29.08 seconds 2.87 seconds 0.25 seconds
TXID+0x20(6) 31.06 minutes 3.1 minutes 0.31 minutes
TXID+0x20(12) 33.13 hours 3.31 hours 0.33 hours
TXID+0x20(16) 22.09 days 2.21 days 0.22 days
TXID+ANS+0x20(6) 2.07 hours 0.21 hours 0.02 hours
TXID+ANS+0x20(12) 5.52 days 0.55 days 0.055 days
TXID+ANS+0x20(16) 88.35 days 8.82 days 0.88 days
TXID+WSEC(5) 55.83 years 5.58 years 0.56 years

Table 1: Effect of port derandomization due to NAT/PAT devices
on the time needed to reach Psucc = 0.5 using Kaminsky’s attack
for different combinations of defense scenarios and attacker’s band-
width.

load-balancers, network address translators, etc., which per-
form port translation without preserving randomness [10]
(we refere to such devices as NAT/PAT). The numbers be-
tween parenthesis in the legend of both Figure 7 and Ta-
ble 1 represent the additional bits of entropy for the ran-
dom source port and 0x20-bit encoding techniques, and the
length of the random prefix strings for WSEC DNS queries.

It is clear from Table 1 that the TXID is not sufficient
to protect against Kaminsky’s attack, because in this case
the expected time T̄attack after which Psucc = 0.5 is in the
order of seconds (the exact value depends on the attacker’s
bandwidth). Even combining the TXID with the random
choice of an ANS and 0x20-bit encoding for domain names
containing 6 letters, T̄attack is in the order of minutes. In
case of longer domain names, e.g., names containing 12
letters, 0x20-bit encoding in combination with the random
ANS choice offers a little better protection, bringing T̄attack
up to the order of days, although a successful attack is still
quite feasible for a motivated attacker (it would take about
13 hours to reach Psucc = 0.5 with BW = 10Mbps).
0x20-bit encoding starts providing better protection only
when 16 letters or more are present in the domain name.
On the other hand, regardless of the length of the domain
name, WSEC DNS provides a robust solution to cache poi-
soning attacks, including Kaminsky’s attack [15], because
even in absence of effective source UDP port randomiza-
tion an attacker would need to persistently attempt the poi-
soning attack for years before reaching a 50% probability
of success. For example, in order for an attacker to reach
Psucc = 0.5 with a bandwidth BW = 10Mbps, it would
take a time T̄attack of more than 5 years. By increasing the
length of the random prefixes used in WSEC DNS queries,
the time needed for a successful poisoning attack increases
exponentially. For example, if we increased the length of
the random prefix strings to 6, even with a bandwidth for
the attacker equal to BW = 1Gbps it would take a time
T̄attack of about 2 years to reach Psucc = 0.5.

4 Experiments

We developed a proof-of-concept implementation of
WSEC DNS on top of the PowerDNS recursive DNS re-



DNS Server # queries to ANSs # SERVFAIL Median RTT DNS traffic Max Cache
pdns 220,930 3,892 52 ms 28.67 MB 3.25 MB
pdns+0x20 229,157 4,093 73 ms 30.04 MB 3.25 MB
pdns+WSEC+0x20(16) 255,605 4,066 87 ms 37.22 MB 4.79 MB
pdns+WSEC 269,156 4,125 90 ms 41.11 MB 5.57 MB

Table 2: Comparison between PowerDNS, 0x20 and WSEC DNS.

solver version 3.1.7 (www.powerdns.com). Our imple-
mentation of WSEC DNS consists of about 250 lines of
C code9. We experimented with PowerDNS (referred to
as pdns in the following) with no modifications, 0x20-bit
encoding implemented on top of pdns (pdns+0x20), and
WSEC DNS implemented on top of pdns (pdns+WSEC).
Also, we experimented with a combination of WSEC DNS
and 0x20, which we refer to as pdns+WSEC+0x20(16). In
this latter case, the WSEC DNS query process (see Sec-
tion 3) is activated only when the queried domain name con-
tains less than 16 letters. Otherwise, only the 0x20-bit en-
coding is used. We performed all the experiments running
the four different versions of the DNS resolver software
on Xen (www.xen.org) virtual machine images with the
same characteristics, namely a Linux-based operating sys-
tem and 512MB of RAM per virtual machine. We collected
a dataset of real DNS queries towards the RDNS resolver
of a large enterprise network. The collected dataset con-
tained a total of 5,539,540 queries to 473,487 distinct do-
main names. These queries were issued by 24,140 distinct
hosts in a period of one day. We then extracted a random
sample of 100,000 queries from the collected dataset and
replayed this set of DNS queries for each of our experi-
ments with different configurations of the DNS resolvers.
The sampled 100,000 queries where related to 40,081 dis-
tinct domain names. As we do not have control over the
ANSs related to the domain names in the replayed queries,
all the results presented below are related to non-WSEC-
enabled zones, and therefore represent a measure of the
price to pay in order to maintain backward compatibility.
In order to estimate the latency introduced by WSEC DNS
queries, for each query we measured the Round Trip Time
(RTT) between the stub-resolver and the RDNS. Namely,
given a query q issued by a host behind the RDNS, let t1
be the time when q is sent to the RDNS resolver, and t2 be
the time when the response from the RDNS resolver was re-
ceived. In this case RTT (q) = t2 − t1. We also measured
the amount of DNS traffic flowing from the RDNS to au-
thoritative name servers, and the amount of cache used by
the RDNS in different scenarios.

The results of our experiments are summarized in Ta-
ble 2. By replaying our random sample of 100,000 queries
mentioned above, the total number of queries to exter-
nal ANSs generated by the RDNS using the original im-
plementation of pdns is 220,930. The additional 120,930

9Our implementation of WSEC DNS can be downloaded from http:
//roberto.perdisci.com/projects/wsecdns.

queries are due to the fact that each query from the stub-
resolver to the RDNS causes the RDNS to initiate a re-
cursive “discovery” process to find an ANS that is able
to provide an authoritative response to the query. Among
the 100,000 queries initiated by the stub-resolver, 3,892 re-
turned a Server Failure message, which means that no valid
ANS was found for the requested domain. On the other
hand, using pdns+WSEC the RDNS generated 269,156
DNS queries to ANSs, and returned 4,125 Server Failure
messages to the stub-resolver. The increase in query vol-
ume is due to the additional “handshake” queries. It is worth
noting that the WSEC DNS query process is applied by the
RDNS to the original query from the stub-resolver as well
as to all the queries needed to resolve ANSs out-of-bailiwick
(i.e., the ones for which the “glue” records in the additional
section of the response cannot be trusted). The increase in
queries from the RDNS to the ANSs is the major cause of
increase in RTT. During all our tests we noticed no signif-
icant increase in CPU usage on the RDNS resolver. The
number of additional queries depends on the “locality” of
the queries from the stub-resolvers, i.e., the proportion be-
tween the number of distinct domains queried and the num-
ber of distinct zones in which they are “located”. An exten-
sive study of these factors and their impact on the effective-
ness of the cache for WSEC DNS is quite complex and is
deferred to future work. The slight increase in the number
of Server Failure messages for pdns+WSEC is due to an
artifact of our implementation. Every time a “handshake”
TXT query from the RDNS to an unreachable (or malfunc-
tioning) ANS causes a Server Failure message, our imple-
mentation of pdns+WSEC assumes the zone is not WSEC-
enabled and retries to query by omitting the WSEC random
prefix. However, since the ANS is unreachable, this second
step is unnecessary, because it will return the same exact
Server Failure message. This problem can be solved by
optimizing the implementation of our WSEC DNS query
algorithm. Considering that the RDNS needs to wait for
3 seconds before declaring an ANS unreachable and send
the Server Failure message to the stub-resolver, optimizing
our WSEC DNS implementation would also contribute to
decrease the median RTT.

From Table 2, it is easy to see that the increase in se-
curity provided by WSEC DNS comes at a price in terms
of latency (increase in RTT), DNS traffic, and memory us-
age. However, the overhead due to WSEC DNS can be in
part mitigated by software optimization and by combining
it with the 0x20-bit encoding (e.g., for domain names that



contain 16 letters or more). We argue that the price to be
paid in terms of increase in overhead is not that high, in
particular in comparison with pdns+0x20, if we consider
the obtained improvement in security with respect to using
only 0x20-bit encoding (see Section 3.5), and considering
that complete backward compatibility is maintained.

5 Conclusion

We presented Wildcard-Secure DNS (WSEC DNS), a
novel DNS query process that wisely combines the use of
wildcard domain names and TXT resource records to protect
recursive DNS resolvers (RDNS) from brute-force cache
poisoning attacks. We showed that WSEC DNS makes
cache poisoning attacks, including Kaminaksy’s attack [15],
practically infeasible, even for very motivated and powerful
attackers. Also, WSEC DNS provides complete backward
compatibility with name servers that do not intend to sup-
port WSEC DNS queries, thus allowing for an incremental
deployment. Our approach does not require any changes
at the root and top-level-domain (TLD) name servers, thus
allowing WSEC DNS to be deployed on a large-scale in a
short period of time. This is in contrast with DNSSEC, for
which a large-scale deployment seems to be far in the fu-
ture.
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A Additional Related Work

In XQID [13], Høy proposes to prepend a random
string of length between 32 and 71 to domain names.
For example, when querying for www.example.com
the RDNS will format the DNS query to contain some-
thing similar to xqid--q.p0yw5c4eq0c2hszu.www.
example.com. Similarly to WSEC DNS, XQID makes
poisoning attacks practically infeasible, because now the
search space for the attacker is huge and the chance of
guessing a valid response is negligible, even if the attacker
persistently tried to poison the cache for years (see Sec-
tion 3.5). However, XQID suffers from a number of prob-
lems. XQID requires software updates on both the RDNS
resolvers and the authoritative name servers [13], includ-
ing the root and TLD name servers. This would clearly
hamper a large-scale deployment of XQID. On the other
hand, WSEC DNS does not require any change at the root
and TLD name servers, and it only requires configuration
changes for the other name server that intend to enable
WSEC DNS queries. Also, XQID effectively shortens the
maximum length of domain names defined by the DNS
protocol, because up to 71 characters have to be reserved
for the extended ID. In addition, backward compatibility is
provided by identifying what name servers do not support
XQID, and then requering for the original domain name,
without any caching system. This has the effect of doubling
the amount of DNS traffic towards the name servers that
do not support XQID. WSEC DNS is significantly different
from XQID in several ways, and does not suffer from the
problems that afflict XQID. Differently from XQID, WSEC

DNS is based on wildcard domain names, does not require
software changes for name servers (including root and TLD
name servers), and allows us to use variable length ran-
dom strings as domain name prefixes. Also we show in
Section 3.5 that less than 6 alphanumeric characters are
sufficient to make poisoning attacks practically infeasible.
Furthermore, differently from XQID, WSEC DNS provides
complete backward compatibility without significantly in-
creasing the DNS traffic towards name servers that do not
support it, thus allowing for an incremental deployment.

Other security researchers have proposed to increase the
entropy in DNS queries by allowing the QDCOUNT field
to be greater than one, for example. This would allow the
RDNS to insert more than one entry in the question section
of DNS queries. The first entry may be used for the “real”
query for which we require an answer, whereas the addi-
tional entries may be used to increase the entropy of the
query. If name servers were to preserve all these entries in
the question section of the response, and answer correctly
to only the first query in the question section, this technique
may be used to increase the entropy of DNS queries making
poisoning attacks harder. However, most name servers do
not currently support queries for which the QDCOUNT is
greater than one and consider them as malformed queries.
Therefore, a large-scale software update on both RDNS re-
solvers and name servers would be required for this solution
to work. Furthermore, it is not clear if an incremental de-
ployment would be possible at all. Another way to increase
the entropy of DNS queries may be to use the unused bits
of the QClass field. However, this would also force a large-
scale software update without support for an incremental
deployment.

B WSEC TXT vs. SPF

TXT resource records were originally meant for storing
descriptive text about a domain name, but are now widely
used to also carry information related to the Sender Pol-
icy Framework (SPF) [26] to mitigate the spam emails phe-
nomenon. We would like to emphasize the fact the wild-
card TXT records used for WSEC do not interfere with ei-
ther SPF or simple descriptive text. In order to explain
why this is the case, let us consider the zone file reported
in Figure 4 as a configuration example. Ignore for a mo-
ment the lines marked with “; WSEC”, and assume they
were not present. Querying for example.com TXT?
would return "v=spf1 a mx -all". On the other
hand, querying for www.example.com TXT? would re-
turn "This is our website". Now, consider the
configuration lines masked with “; WSEC”. It is easy
to see that querying for example.com TXT? or www.
example.com TXT? still returns the expected answer as
before. It is also worth noting that a query to <rand>._



wsecdns_.example.com TXT? still correctly returns
"v=spf1 a mx -all", whereas a query to <rand>
._wsecdns_.www.example.com TXT? correctly re-
turns "This is our website". Therefore, the intro-
duction of WSEC does not alter the original information,
and enables the protection of the RDNS’s cache (thanks to
the <rand> prefix) at the same time.

There is one potential issue: what happens if some-
one queries for the TXT record of a non-existant domain
while expecting to obtain an SPF-related string? For ex-
ample, a mail server is testing to see if mail apparently
coming from abc.example.com should be blocked or
not, according to SPF rules. If we do not consider the
lines marked by “; WSEC”, the mail server should receive
a �NXDOMAIN response. On the other hand, if the “;
WSEC” lines are present, the mail server will receive the
string "|wsecdns=enabled|". However, this does not
represent a problem, because RFC 4408 (which describes
the SPF protocol) explicitly says

“Records that do not begin with a version section
of exactly ‘v=spf1’ are discarded”.

Therefore, the mail server in our example will discard the
string "|wsecdns=enabled|", thus reducing to the
case of no valid SPF entry for abc.example.com.

Figure 8: Example-2 of WSEC-compliant zone file.

Consider now the zone file reported in Figure 8, and
again ignore the lines marked with “; WSEC” for a mo-
ment. As we can see, in this case a wildcard “* IN
CNAME” resource record exists. In this case, a wildcard “*
IN TXT” record cannot coexist (according to RFC 1034)
with the wildcard CNAME. Now assume no information
is present about the zone example.com in the RDNS’s
cache. Also, assume the first query from a stub-resolver

Algorithm 1 WSEC DNS Query Process (simplified algo-
rithm)

function WSecQuery :
inputD {the domain to be resolved (e.g., www.example.com)}
input T {the query type requested by the host (e.g., A?)}
inputN {the length of random prefix strings (e.g., 5)}
output {a DNS answer}

α← GenerateRandomString(N )
q ← Query(α._test_._wsecdns_.D,TXT) {issues a TXT? DNS query
of the domain name α._test_._wsecdns_.D (e.g., a1b2c._test_._
wsecdns_.www.example.com TXT?)}
r ← GetNextValidAnswerTo(q) {multiple answers may be received if poisoning
is attempted. Only the first answer that matches the actual queried domain name in
the question section is accepted}

w ← false
if Status(r)!=NXDOMAIN then
w ← isWSECEnabled(r) {w is true is r contains
"|wsecdns=enabled|"}
if w == true then

AddZoneToPositiveWSECCache(D) {adds the zone of D in the positive
WSEC cache}
α′ ← GenerateRandomString(N )
q′ ← Query(α′._wsecdns_.D,T ) {e.g., q′=d3rjf._wsecdns_
.www.example.com}
r′ ← GetNextValidAnswerTo(q′)
r′′ ← NormalizeWSECResponse(r′) {see Algorithm 2}

end if
end if
if w == false then

AddZoneToNegativeWSECCache(D) {adds the parent zone ofD in the nega-
tive WSEC cache}
q′′ ← Query(D,T ) {queries the original domain name and type}
r′′ ← GetNextValidAnswerTo(q′′)

end if

return r′′

regarding a domain in that zone is about a non-existant
(without considering wildcards) domain X.example.
com. Given that no information about the zone is present
in the cache, the RDNS will first perform the WSEC “hand-
shake” querying for <rand>._test_._wsecdns_.X.
example.com TXT?. This query will match the wildcard
“* IN CNAME” and then return the SPF string "v=spf1
a mx -all" and the RDNS cannot determine if WSEC
is enabled or not. In this case the RDNS can simply dis-
ambiguate by performing a query directly to <rand>._
test_._wsecdns_.example.com TXT?, which ei-
ther return "|wsecdns=enabled|" if WSEC is en-
abled, or NXDOMAIN. In our experiments we found that
only about 7% of the top 500 domain names (ranked ac-
cording to Alexa (www.alexa.com)) have a configura-
tion similar to the one reported in Figure 8, where a wild-
card “* IN CNAME” resource record exists. Also, it is
worth noting that this causes the RDNS to perform a sec-
ond WSEC “handshake” attempt only if, by chance, the first
time a stub-resolver issues a query for a domain in one of
these zones that does not exist (if we do not consider the
wildcard).



Algorithm 2 WSEC Response Normalization Process
function NormalizeWSECResponse :
input r {a WSEC response}
output {normalized DNS response}

r′ ← CutWSECPrefixFromQuestionSection(r) {r′ is equal to r, but the domain
name reported in the question section of r′ is normalized (e.g., cuts d3rjf.
_wsecdns_ from d3rjf._wsecdns_.www.example.com}
if Status(r)==NXDOMAIN then

return r′
else
q ← ExtractQueriedDomainFromQuestionSection(r′) {e.g., q=www.
example.com}
l← ExtractFirstEntryFromAnswerSection(r′)
l′ ← CutWSECPrefixFromDomain(l) {e.g., cuts d3rjf._wsecdns_ from
d3rjf._wsecdns_.www.example.com}
if RRTypeOf(l)==CNAME AND l′ == q then
{the condition l′ == q makes sure that the CNAME is due to a WSEC
query and points to a name in the same zone}
r′′ ← DeleteFirstEntryFromAnswerSection(r′)

else
r′′ ← RewriteFirstEntryOfAnswerSection(r′,l′) {this basically cuts the
WSEC prefix from the domain name in the first entry of the answer section
of the DNS response}

end if
end if

return r′′

C WSEC DNS for Delegated Sub-Zones

In Section 3.3 we assumed that if, for example, the
zone example.com is WSEC-enabled, all its sub-zones
are also WSEC-enabled. This is recommended. How-
ever, given that one of the requirements of WSEC DNS
is the support of incremental deployment, enabling WSEC
for all the sub-zones at the same time may not be easy
(in particular for large organizations). We can easily solve
this problem by following the delegation information con-
tained in DNS responses coming from the authoritative
name servers (ANS) for example.com. As an exam-
ple, consider the following scenario. Assume subzone.
example.com is a subzone of example.com. Let
www.subzone.example.com A? be the query issued
by the stub-resolver, and assume the WSEC positive cache
of the RDNS indicates that WSEC is enabled for the
zone example.com, but no WSEC cache entry exists for
subzone.example.com. At this point the RDNS will
issue the query <rand>._wsecdns_.www.subzone.
example.com A? and send it to the ANS for example.
com, say ns.example.com. As ns.example.com
has delegated the authority over subzone.example.
com to a different ANS, say ns.subzone.example.
com, the response from ns.example.com will contain
delegation information (in the authority and additional sec-
tions of the response). This allows the RDNS to realize
that there is a zone delegation, and because there is no
information about the support of WSEC for subzone.
example.com in the WSEC cache, the RDNS will
need to query <rand>._test_._wsecdns_.www.
subzone.example.com TXT?, first, in order to retrieve

the correct WSEC prefix. Assuming the response indicates
subzone.example.com is WSEC-enabled, the RDNS
will now issue the query <rand>._wsecdns_.www.
subzone.example.com A?. On the other hand, if
the ANS ns.subzone.example.com does not support
WSEC queries, the RDNS will issue the “standard” query
www.subzone.example.com A? and store the zone
subzone.example.com in the negative WSEC cache.

D Analysis of Open Recoursive DNS Re-
solvers and Port Randomization

In order to understand to what extent UDP source port
randomization has been adopted so far, we studied the be-
havior of open-recoursive DNS resolvers (O-RDNS), i.e.,
RDNS resolvers that accept and respond to recoursive DNS
queries received from anywhere on the Internet [9]. Our ob-
jective is to verify what is the percentage of O-RDNS that
use port randomization, and how many O-RDNS relay on
another network device that forwards DNS queries to au-
thoritative name servers (ANS) on their behalf. To this end,
we use a methodology similar to the one proposed in [9].
In practice, we send queries to the O-RDNS “forcing” it to
contact an authoritative name server (ANS) under our con-
trol. This can be easily done by registering a number of do-
main names, and then quering an O-RDNS for the domains
(and their sub-domains) that we registered.

We experimented with 261,630 distinct active O-RDNS
resolvers. To each one of them, we sent DNS queries crafted
so that the O-RDNS is “forced” to contact our ANS 40
times in a very short period of time10. We then measured
how many distinct source UDP ports where used by each
O-RDNS that contancts our ANS as a consequence of our
“stimulus” DNS queries. This allowed us to verify if the
O-RDNS was using a fixed port, variable port numbers in a
guessable sequence, or a randomized port. Also, we were
able to measure whether an O-RDNS relays on another net-
work device that forwards its packets to the ANS. This can
be done by simply comparing the IP address of the O-RDNS
to which we sent the query, and the IP address from which
the ANS receives the query we just sent. We prepend a
unique identifier to each query in order uniquely identify
each O-RDNS we tested and to exclude “spurious” queries
received by our ANS.

We found that among the 261,630 O-RDNS we consid-
ered in our experiments, only 38,381 (14.61%) contacted
our ANS directly, whereas 223,249 (85.39%) contacted our
ANS through another device (i.e., our ANS received queries
from a different IP address than the exepected O-RDNS’s
IP to which we sent the “stimulus” quereis). This result is
in accordance with the findings in [9]. Of the 38,381 O-

10We use 10 distinct consecutive queries. Each query forces the RDNS
to follow a CNAME chain of length 4.



RDNS resolvers that contacted our ANS directly, 25,386
(66.14%) did so using a fixed (non-random) source UDP
port. On the other hand, among the 223,249 O-RDNS that
contacted our ANS through another device, we found that
83,691 ORDNS (37.49%) of them relied on a device that
forwards quries on their behalf to our ANS using a fixed
source UDP port. Although from our experiments we can-
not draw exact conclusions on the nature of the external de-
vices that forward packets on behalf of O-RDNS resolvers
(e.g., whether these devices are load-balancers, firewalls,
NAT/PAT, etc.), we can certainly notice that port random-
ization is not yet largely adopted by neither many of such
devices, nor by many of the O-RDNS that contacted our
ANS directly. Therefore, an attacker may be able to launch
a cache poisoning attack towards these O-RDNS resolvers,
and successfully poison the cache in a very short time (min-
utes or even seconds).


