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ABSTRACT
Bulletproof hosting Autonomous Systems (ASes)—
malicious ASes fully dedicated to supporting cybercrime—
provide freedom and resources for a cyber-criminal to
operate. Their services include hosting a wide range of
illegal content, botnet C&C servers, and other malicious
resources. Thousands of new ASes are registered every
year, many of which are often used exclusively to facilitate
cybercrime. A natural approach to squelching bulletproof
hosting ASes is to develop a reputation system that can
identify them for takedown by law enforcement and as
input to other attack detection systems (e.g., spam filters,
botnet detection systems). Unfortunately, current AS
reputation systems rely primarily on data-plane monitoring
of malicious activity from IP addresses (and thus can only
detect malicious ASes after attacks are underway), and are
not able to distinguish between malicious and legitimate but
abused ASes.

As a complement to these systems, in this paper, we
explore a fundamentally different approach to establishing
AS reputation. We present ASwatch, a system that identi-
fies malicious ASes using exclusively the control-plane (i.e.,
routing) behavior of ASes. ASwatch’s design is based on
the intuition that, in an attempt to evade possible detection
and remediation efforts, malicious ASes exhibit “agile” con-
trol plane behavior (e.g., short-lived routes, aggressive re-
wiring). We evaluate our system on known malicious ASes;
our results show that ASwatch detects up to 93% of mali-
cious ASes with a 5% false positive rate, which is reasonable
to effectively complement existing defense systems.

CCS Concepts
•Security and privacy → Network security; •Networks
→ Network monitoring;
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1. INTRODUCTION
Today’s cyber-criminals must carefully manage their net-

work resources to evade detection and maintain profitable
illicit businesses. For example, botmasters need to pro-
tect their botnet command-and-control (C&C) servers from
takedowns, spammers need to rotate IP addresses to evade
trivial blacklisting, and rogue online businesses need to set
up proxies to mask scam hosting servers. Often, cyber-
criminals accomplish these goals by hosting their services
within a malicious autonomous system (AS) owned by an
Internet service provider that willingly hosts and protects il-
licit activities. Such service providers are usually referred to
as bulletproof hosting [7], due to their reluctance to address
repeated abuse complaints regarding their customers and
the illegal services they run. Notorious cases of malicious
ASes include McColo [22], Intercage [19], Troyak [27],
and Vline [2] (these ASes were taken down by law en-
forcement between 2008 and 2011). According to Hostex-
ploit’s reports [14], these types of ASes continue to appear
in many regions around the world—mostly in smaller coun-
tries with lower levels of regulation, but also in the United
States—to support activities ranging from hosting botnet
command-and-control to phishing attacks [15]. For exam-
ple, the Russian Business Network [31], one of the most
notorious and still active cybercrime organizations, have de-
centralized their operations across multiple ASes. In most
cases, nobody notices bulletproof hosting ASes until they
have become hubs of illegal activities, at which point they
are de-peered from their upstream providers. For exam-
ple, Intercage [19] was de-peered more than ten times be-
fore it reached notoriety and was cut off from all upstream
providers.

To defend against these crime-friendly ASes, the com-
munity has developed several AS reputation systems that
monitor data-plane traffic for illicit activities. Existing AS
reputation systems typically monitor network traffic from
different vantage points to detect the presence of either
malware-infected machines that contact their C&C servers,
send spam, host phishing or scam websites, or perform
other illicit activities. These systems establish AS reputa-
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tion by measuring the “density” of malicious network ac-
tivities hosted within an AS. For instance, FIRE [36] tracks
the number of botnet C&C and drive-by malware download
servers within an AS. ASes that host a large concentration of
malware-related servers are then assigned a low reputation.
Similarly, Hostexploit [14] and BGP Ranking [4] compute
the reputation of an AS based on data collected from sources
such as DShield [11] and a variety of IP and domain name
blacklists.

Unfortunately, these existing AS reputation systems have
a number of limitations: (1) They cannot distinguish be-
tween malicious and legitimate but abused ASes. Legiti-
mate ASes often unwillingly host malicious network activ-
ities (e.g., C&C servers, phishing sites) simply because the
machines that they host are abused. For example, AS 26496
(GoDaddy) and AS 15169 (Google) repeatedly appeared for
years among the ASes with lowest reputation, as reported by
Hostexploit. Although these ASes are legitimate and typ-
ically respond to abuse complaints with corrective actions,
they may simply be unable to keep pace with the level of
abuse within their network. On the other hand, malicious
ASes are typically unresponsive to security complaints and
subject to law-enforcement takedown. (2) Because of the in-
ability to distinguish between malicious and legitimate but
abused ASes, it is not clear how to use the existing AS rank-
ings to defend against malicious ASes. (3) Existing AS repu-
tation systems require direct observation of malicious activ-
ity from many different vantage points and for an extended
period of time, thus delaying detection.

We present a fundamentally different approach to estab-
lishing AS reputation. We design a system, ASwatch, that
aims to identify malicious ASes using exclusively control-
plane data (i.e., the BGP routing control messages ex-
changed between ASes using BGP). Unlike existing data-
plane based reputation systems, ASwatch explicitly aims to
identify malicious ASes, rather than assigning low reputa-
tion to legitimate ASes that have unfortunately been abused.

Our work is motivated by the practical help that an AS
reputation system, which accurately identifies malicious
ASes, may offer: (1) Network administrators may handle
traffic appropriately from ASes that are likely operated by
cyber criminals. (2) Upstream providers may use reliable AS
reputation in the peering decision process (e.g. charge higher
a low reputation customer, or even de-peer early). (3) Law
enforcement practitioners may prioritize their investigations
and start early monitoring on ASes, which will likely need
remediation steps.

The main intuition behind ASwatch is that malicious ASes
may manipulate the Internet routing system, in ways that le-
gitimate ASes do not, in an attempt to evade current detec-
tion and remediation efforts. For example, malicious ASes
“rewire” with one another, forming groups of ASes, often
for a relatively short period of time [20]. Only one AS from
the group connects to a legitimate upstream provider, to en-
sure connectivity and protection for the group. Alternatively,
they may connect directly to a legitimate upstream provider,
in which case they may need to change upstream providers
frequently, to avoid being de-peered and isolated from the

rest of the internet. Changing providers is necessary because
a legitimate upstream provider typically responds (albeit of-
ten slowly) to repeated abuse complaints concerning its cus-
tomer ASes. Another example is that a malicious AS may
advertise and use small blocks of its IP address space, so
that as soon as one small block of IP addresses is blocked or
blacklisted, a new block can be advertised and used to sup-
port malicious activities. To capture this intuition, we derive
a collection of control-plane features that is evident solely
from BGP traffic observed via Routeviews [32]. We then
incorporate these features into a supervised learning algo-
rithm, that automatically distinguishes malicious ASes from
legitimate ones.

We offer the following contributions:

• We present ASwatch, an AS reputation system that
aims to identify malicious ASes by monitoring their
control plane behavior.
• We identify three families of features that aim to cap-

ture different aspects of the “agile” control plane be-
havior typical of malicious ASes. (1) AS rewiring cap-
tures aggressive changes in AS connectivity; (2) BGP
routing dynamics capture routing behavior that may re-
flect criminal illicit operations; and (3) Fragmentation
and churn of the advertised IP address space capture
the partition and rotation of the advertised IP address
space.
• We evaluate ASwatch on real cases of malicious ASes.

We collect ground truth information about numer-
ous malicious and legitimate ASes, and we show that
ASwatch can achieve high true positive rates with rea-
sonably low false positives. We evaluate our statistical
features and find that the rewiring features are the most
important.
• We compare the performance of ASwatch with BGP

Ranking, a state-of-the-art AS reputation system that
relies on data-plane information. Our analysis over
nearly three years shows that ASwatch detects about
72% of the malicious ASes that were observable over
this time period, whereas BGP Ranking detects only
about 34%.

The rest of the paper is organized as follows. Section 2 offers
background information about bulletproof hosting ASes.
Section 3 describes the features we devised and an overview
of our system. Section 4 discusses the evaluation of the sys-
tem. Section 5 discusses various limitations of our work,
Section 6 presents related work, and Section 7 concludes.

2. BACKGROUND
We define malicious and legitimate ASes and provide

background information, with an emphasis on characteris-
tics that are common across most confirmed cases of mali-
cious ASes.

2.1 Bulletproof Hosting ASes
In this section, we describe more precisely the differ-

ences between malicious (bulletproof hosting) and legiti-
mate ASes. We also discuss how malicious ASes tend to
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Figure 1: The AS-TROYAK infrastructure (malicious ASes iden-
tified by blogs.rsa.com). The core of the infrastructure comprises
eight bulletproof networks, which connect to legitimate ASes via a
set of intermediate ”masking" providers.

connect with one another, and how some ISPs (some of
which are themselves malicious) provide these ASes with
upstream connectivity and protection. To illustrate this be-
havior, we explore a case study that shows how malicious
ASes may be established and “rewired” in an attempt to
evade current detection and takedown efforts.

Malicious vs. Legitimate ASes: We call an AS malicious,
if it is managed and operated by cyber-criminals, and if its
main purpose is to support illicit network activities (e.g.,
phishing, malware distribution, botnets). In contrast, we re-
fer to an AS as legitimate, if its main purpose is to provide
legitimate Internet services. In some cases, a legitimate AS’s
IP address space may be abused by cyber-criminals to host
malicious activities (e.g., sending spam, hosting a botnet
command-and-control server). Such abuse is distinct from
those cases where cyber-criminals operate and manage the
AS. ASwatch focuses on distinguishing between malicious
and legitimate ASes; we aim to label legitimate but abused
ASes as legitimate. Our approach is thus a significant depar-
ture from existing data-plane based AS reputation systems,
which are limited to computing reputation by primarily fo-
cusing on data-plane abuse, rather than establishing if an AS
is actually malicious.

Malicious AS Relationships: Bulletproof hosting ASes
provide cyber-criminals with a safe environment to oper-
ate. Sometimes, malicious ASes form business relationships
with one another to ensure upstream connectivity and protec-
tion. For example, they may connect to upstream providers
that are themselves operated in part with criminal intent. In
turn, these upstream ASes connect to legitimate ISPs, effec-
tively providing cover for the bulletproof hosting ASes [2].
These “masking” upstream providers may not be actively
engaged in cyber-criminal activity themselves (as observed
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Figure 2: Connectivity snapshots of three cases of ASes which are
operated by cyber-criminals. All connected to a “masking" up-
stream provider. Directed edges represent customer-provider rela-
tionships; undirected edges represent peering relationships.

from the data-plane). Consequently, network operators at
legitimate ISPs may be unaware of the partnership among
these “shady” upstream providers and bulletproof hosting
ASes, making detection and remediation efforts more dif-
ficult.

Efforts to take down bulletproof hosting ASes have been
ongoing since at least 2007, when upstream ISPs of the
Russian Business Network (RBN) refused to route its traf-
fic [21]. Many organizations track rogue ASes and report
tens to hundreds of new rogue ASes every year [15]. Take-
down efforts often result in a malicious AS moving to new
upstream ISPs; for example, RBN now operates on many
different ISP networks.

Case Study - Behavior of Malicious ASes: Figure 1 shows
an example of a real network of eight bulletproof hosting
ASes that connect to legitimate ASes via a set of interme-
diate “masking” providers. Notice that while we label the
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Figure 3: ASwatch system architecture.

malicious ASes in this case study, based on ground truth
provided by blogs.rsa.com, we independently derive and an-
alyze the relationships between the ASes from routing infor-
mation. At the time they were reported by blogs.rsa.com
(March 2010), the eight bulletproof ASes hosted a range
of malware, including Zeus Trojans, RockPhish JabberZeus
servers, and Gozi Trojan servers. We chose this as a case
study because it represents one of the most well documented
cases of known bulletproof hosting ASes, and is representa-
tive of other less well known incidents.

The bulletproof hosting ASes eventually switched be-
tween five upstream providers, which served as intermedi-
aries to connect to the legitimate ASes. In turn, the upstream
“masking" providers were customers of nine different legit-
imate ISPs.

To understand how malicious ASes form business rela-
tionships and how these relationships evolve over time, we
tracked the upstream and downstream connectivity of the
malicious ASes, as shown in Figures 1 and 2 (the figures
show an activity period from January to April 2010; the ma-
licious ASes went offline in March 2010).

We tracked the connectivity of one “masking” AS, Troyak
(AS 50215), and two bulletproof hosting ASes, Bogonet
(AS 47821) and Prombuddetal (AS 44107), that belong to
the Troyak infrastructure. To track their upstream and down-
stream connectivity, we used a publicly available dataset
from CAIDA, which provides snapshots of the AS graph,
annotated with business relationships [25]. Figure 2 shows
snapshots of the connectivity for the reported ASes.

All of these malicious ASes connected to a “masking” up-
stream provider, thus avoiding direct connectivity with le-
gitimate ISPs, and also they change their connectivity be-
tween one another. For example, before takedown, Troyak
had three upstream providers: Root, Ihome, and Oversun-
Mercury. After the blog report on March 2010, Troyak lost
all of its upstream providers and relied on a peering rela-
tionship with Ya for connectivity. After April 2010, Troyak
and its customers went offline. Bogonet switched from Taba

to Smallshop, and Prombuddetal switched from Profitlan to
Smallshop, before going offline.

3. ASWATCH
ASwatch monitors globally visible BGP routing activity

and AS relationships, to determine which ASes exhibit con-
trol plane behavior typical of malicious ASes. Because of
the nature of their operations (criminal activity) and their
need to fend off detection and possible take-down efforts,
malicious ASes tend to exhibit control-plane behavior that
is different from that of legitimate ASes. We now discuss
how ASwatch works, including a detailed description of the
features we used to differentiate between malicious and le-
gitimate ASes, and our intuition for choosing each feature.

3.1 System Overview
Figure 3 presents an overview of ASwatch. The sys-

tem has a training phase (Section 3.3.1) and an operational
phase (Section 3.3.2). During the training phase, ASwatch
learns the control-plane behavior of malicious and legiti-
mate ASes. We provide the system with ¬ a list of known
malicious and legitimate ASes (Section 4.1 describes this
dataset). ASwatch tracks the control-plane behavior of the
legitimate and malicious ASes over time using two sources
of information: ­ business relationships between ASes, and
® BGP updates (from RouteViews). ASwatch then computes
statistical features (Section 3.2 describes this process) from
the previous inputs. Each AS is represented by a feature
vector based on these statistical features ¯. ASwatch uses
these labeled feature vectors and a supervised learning algo-
rithm to ° train a statistical model. During the operational
phase, we provide ASwatch with a list of new (not yet la-
beled) ASes ± to be classified as legitimate or malicious us-
ing the same statistical features over the given time period.
Then, ASwatch ² computes the new AS feature vectors and
° tests them against the previously trained statistical model.
Finally, ³ the system assigns a reputation score to each AS.

blogs.rsa.com
blogs.rsa.com


3.2 Statistical Features
In this section, we describe the features we compute and

the intuition for choosing them. Table 1 gives an overview
of our feature families, and the most important group of fea-
tures for each family. Given an AS, A, and time window, T ,
ASwatch monitors A’s control-plane behavior and translates
it into a feature vector consisting of three groups of features:
rewiring activity, IP fragmentation and churn, and BGP rout-
ing dynamics.

Some of the behavioral characteristics we measure can be
naturally described by a probability distribution, rather than
a single numerical feature. In these cases, to capture the
behavioral characteristics in a way that is more suitable for
input to a statistical classifier, we translate each probability
distribution into three numerical features that approximately
describe the shape of the distribution. Specifically, we com-
pute its 5th percentile, 95th percentile, and median. In the
following, we refer to such features as distribution charac-
teristics. We include these three values as features in the
overall feature vector, and repeat this process for all behav-
ioral characteristics that can be described as a probability
distribution.

Notice that even though more values may more accu-
rately summarize a distribution’s shape, such a representa-
tion would significantly increase the overall size of the fea-
ture vector used to describe an AS. For this reason, we chose
to only use three representative values, which we found to
work well in practice.

We now explain in detail the features that ASwatch uses to
establish AS reputation and motivate how we selected them.

3.2.1 Rewiring Activity
This group of features aims to capture the changes in A’s

connectivity. Our intuition is that malicious ASes have dif-
ferent connectivity behavior than legitimate ASes, because
they tend to: (1) change providers more frequently to make
detection and remediation more difficult; (2) connect with
less popular providers, which may have less strict security
procedures and may respond less promptly to abuse com-
plaints, (3) have longer periods of downtime, possibly due
to short-duration contracts or even de-peering from a legit-
imate upstream provider. In contrast, legitimate ASes tend
to change their connectivity less frequently, typically due to
business considerations (e.g., a less expensive contract with
a new provider).

To capture rewiring activity, ASwatch tracks changes to
AS relationships (Step 2 in Figure 3). We use periodic snap-
shots of historic AS relationships, with one snapshot per
month (Section 4.1 describes the data sets in more detail). A
snapshot Si contains the AS links annotated with the type of
relationships, as observed at a given time ti (e.g., one snap-
shot is produced on the first day of each month).

AS presence and overall activity. Let A be the AS for
which we want to compute our features. Given a sequence
of N consecutive snapshots {Si}Ni=1, we capture the pres-
ence of an AS by measuring the total number of snapshots,
C, and the maximum number of contiguous snapshots, M ,

Feature Family Description
Most Important
Feature

Rewiring
Activity

Changes in AS’s con-
nectivity (e.g., frequent
change of providers,
customers or peers)

Link stability

IP Space
Fragmentation &
Churn

IP space partitioning in
small prefixes & rotation of
advertised prefixes

IP space fragmenta-
tion

BGP Routing
Dynamics

BGP announcements pat-
ters (e.g., short prefix an-
nouncements)

Prefix reachability

Table 1: Overview of ASwatch feature families and the most im-
portant feature for each family.

in which A was present, the fraction C/N , and M/N (four
features in total). To capture the overall activity of A, we
measure the distribution (over time) of the number of cus-
tomers, providers, and peers A links with for each snapshot.
To summarize each of these distributions, we extract the dis-
tribution characteristics (5th percentile, 95th percentile, and
median), as described earlier. This yields a total of nine fea-
tures (three for each of the three types of AS relationships).
We also count the total number and fraction (i.e., normal-
ized by C) of distinct customers, providers, and peers that A
has linked with across all C snapshots when it was present,
yielding another six features.

Link stability. We capture the stability of different types
of relationships that an AS forms over time. For each of
the C snapshots where A was present, we track all relation-
ships between A and any other AS. Assuming A appeared
as an upstream provider for another AS, say Ak, in v out of
C snapshots, we compute the fraction F k = v/C. We re-
peat this for all ASes where A appears as a provider at least
once within C snapshots, thus obtaining a distribution of the
F k values. Finally, we summarize this distribution of the
F k values, computing the distribution characteristics as de-
scribed above. We repeat this process, considering all ASes
that appear as the upstream provider for A (i.e., A is their
customer), and for all ASes that have peering relationships
with A. Overall, we compute nine features that summarize
three different distributions (three features for each type of
relationship).

Upstream connectivity. We attempt to capture change in
the set of providers. Assume that from the i-th snapshot Si

we observed a total ofMi upstream providers forA, and call
{Ak

i }
Mi

k=1 the set of upstream provider ASes. Then, for each
pair of contiguous snapshots, Si and Si+1, we measure the
Jaccard similarity coefficient Ji,i+1 between the sets {Ak

i }
and {Ak

i+1}. We repeat for all available (N−1) pairs of con-
secutive snapshots, thus obtaining a distribution of Jaccard
similarity coefficients. To summarize this distribution, we
compute the distribution characteristics as described above,
yielding three features. Figure 4 shows the CDF of the mini-
mum Jaccard similarity, for the malicious and the legitimate



ASes. Overall, the legitimate ASes tend to have higher val-
ues of the Jaccard similarity metric, which indicates fewer
changes in their upstream providers.

Attachment to popular providers. We aim to capture an
AS’s preference for “popular” providers. As previous work
has shown [20], malicious ASes tend to connect more often
with less prominent providers, which may have less strict
security procedures and may respond less promptly to abuse
complaints.

We compute the popularity of each provider per snapshot
and across all snapshots. To this end, we first empirically de-
rive the distribution of the number of customers per provider.
We then consider a provider to be (a) very popular, if it be-
longs to the top 1% of all providers overall; (b) popular, if
it belongs to the top 5%; (c) very popular with respect to a
snapshot Si, if it belongs to the top 1% in Si, and (d) popu-
lar with respect to a snapshot Si, if it belongs to the top 5%
in Si.

We then gather all upstream providers thatA has used and
compute the fraction of these providers that fall into each
of the four categories described above (thus yielding four
features). Finally, we compute the fraction of snapshots in
which A has linked to at least one provider falling into one
of the above categories; we do this for each category, thus
obtaining four more features.

We capture the overall rewiring behavior of an AS with a
total number of thirty five features.

3.2.2 IP Space Fragmentation and Churn
Malicious ASes tend to partition their IP address space

into small BGP prefixes and to advertise only some of these
prefixes at any given time. One possible explanation for this
behavior may be that they attempt to avoid having their en-
tire IP address space blacklisted at once. For example, if
a number of IP addresses within a given BGP prefix are
detected as hosting malicious activities, a blacklist opera-
tor (e.g., Spamhaus [35]) may decide to blacklist the entire
prefix where the IP addresses reside. By fragmenting the IP
address space and advertising only a subset of their BGP pre-
fixes, the operators of a malicious AS may be able to quickly
move malicious activities to a “fresh” space. They perform
this maneuver by leveraging not-yet-blacklisted IP addresses
within newly advertised prefixes. On the other hand, legiti-
mate ASes tend to consistently advertise their available IP
address space in less fragmented prefixes, as they do not
need to attempt to evade blacklisting.

IP Space Fragmentation and Churn Features. We attempt
to capture IP address fragmentation with the following fea-
tures. Given a snapshot, we group the advertised BGP pre-
fixes into contiguous IP blocks. For each, AS we count the
number of BGP prefixes and the number of distinct /8, /16,
and /24 prefixes within each IP block. To capture the churn
in the advertisement of the IP address space, we proceed as
follows. Given a pair of adjacent snapshots for an AS, we
measure the Jaccard similarity among the sets of BGP pre-
fixes advertised by the AS in the two snapshots. Similarly,
we compute the Jaccard index among the sets of /8, /16,
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Figure 5: Malicious ASes withdraw prefixes for longer periods.
The distribution of the median interval between a prefix withdrawal
and re-announcement across 15 contiguous epochs.

and /24 prefixes. We summarize the above four distribu-
tions using the distribution characteristics that we described
earlier, thus obtaining a total of twelve features.

3.2.3 BGP Routing Dynamics
These features attempt to capture abnormal BGP an-

nouncement and withdrawal patterns. For example, to sup-
port aggressive IP address space fragmentation and churn
and avoid easy blacklisting, malicious ASes may periodi-
cally announce certain prefixes for short periods of time.
On the contrary, the pattern of BGP announcements and
withdrawals for legitimate ASes is mainly driven by normal
network operations (e.g., traffic load balancing, local pol-
icy changes), and should thus exhibit BGP routing dynamics
that are different to those of malicious ASes.

Prefix reachability. We aim to capture the fraction of time
that prefixes advertised byA remain reachable, which we de-
fine as reachability. First, we measure the time that elapses
between an announcement and a withdrawal for every ad-
vertised prefix. Given the distribution of these time inter-
vals, we extract the distribution characteristics as described
above. Second, we track the time for a prefix to become
reachable again after a withdrawal. Third, we measure the
inter-arrival time (IAT) between withdrawals, for each of the
prefixes thatA announces, and compute the IAT distribution.



As before, we extract the distribution characteristics for each
of the three distributions, yielding a total of nine features.
Figure 5 shows the CDF of the median reachability value for
the malicious and the legitimate ASes over the course of one
day, and over 15 days. Higher values of this feature suggest
that malicious ASes tend to re-advertise their prefixes after
longer delays.

Topology and policy changes. We track the topology and
policy changes, defined as in Li et al. [24], that are associ-
ated with each prefix. We define a policy change as follows:
after a path to a destination is announced, a second BGP
announcement is observed with the same AS path and next-
hop, yet one or more of the other attributes (such as MED
or community) is different. Similarly, we define a topology
change event as follows: after a path to a destination is an-
nounced, a second announcement follows with an alternate
route (implicit withdrawal) or after a route to a destination
is explicitly withdrawn, a different route (with different AS
path or next-hop attributes) to the same destination is an-
nounced (explicit withdrawal).

To capture and summarize the topology and policy
changes per AS, we group the prefixes per origin AS (the
origin AS appears as the last AS in the AS path). We track
the policy change events for each prefix, and we measure
the inter-arrival time between the events per prefix. Then,
we analyze the collection of inter-arrival times of the policy
events for all prefixes advertised by the same AS. For each
AS, we form the distribution of such intervals, and we ex-
tract the distribution characteristics as described above. We
also compute the total number of events and the total num-
ber of events divided by the total prefixes advertised by the
AS. We repeat this process for the topology change events.
We compute a total of ten features.

3.3 System Operation
We now describe ASwatch’s training and operation.

3.3.1 Training Phase
To train the classifier (Steps 6 and 7 in Figure 3), we first

prepare a training dataset with labeled feature vectors related
to known malicious and legitimate ASes. We start with a
ground truth dataset that includes confirmed cases of mali-
cious ASes, and legitimate ASes (described in more details
is Section 4.1).

We compute the statistical features for each labeled AS
using two sources of data: BGP announcements and with-
drawals from Routeviews [32], and information from a pub-
licly available dataset [25] about the relationships between
ASes. We compute the feature vectors over m contiguous
epochs (in our experiments, each epoch is one day). More
specifically, we maintain a sliding window of sizem epochs,
which advances one epoch at a time. Using this sliding win-
dow, we can compute multiple feature vectors for each AS
(one per window). Then, we associate a label to each feature
vector, according to the ground truth related to the AS from
which a vector was computed.

Finally, to build the statistical classifier, we use the Ran-
dom Forest (RF) algorithm. We experimented with different
algorithms, but we chose RF because it can be trained effi-
ciently and has been shown to perform competitively with
respect to other algorithms for a variety of problems [6].

3.3.2 Operational Phase
Once the statistical classifier has been trained, ASwatch

can assign a reputation score to new ASes (i.e., ASes for
which no ground truth is yet available). ASwatch computes a
reputation score for each new AS observed in the BGP mes-
sages from Routeviews. Suppose that we want to compute
the reputation of an AS, A, over some time period, T . First,
we compute A’s features (as explained in Section 3.2) over
period T , using a sliding window procedure as in the train-
ing phase. Namely, a feature vector is computed for each
window within T . Second, we classify an AS as malicious,
if ASwatch consistently assigns it a low reputation score for
several days in a row.

More specifically, let Ti be the current day of observa-
tions, fA,Ti

be the corresponding feature vector for A, and
s(fA,Ti

) be the bad reputation score output by the classifier
at the end of Ti. Also let Wi = (Ti, Ti+1, . . . , T(i+m−1)) be
a period of m consecutive days. We report A as malicious
if: (a) score s(fA,Ti

) > θ for 90% of the days in period Wi,
where θ is a predefined threshold that can be learned during
the training period; and (b) condition (a) holds for at least l
consecutive periods Wi,Wi+1, . . . ,Wi+l.

We note that we have experimented with multiple values
for m and l (see Section 4.3 for detailed discussion on pa-
rameter selection).

4. EVALUATION
We now describe the data we collected and the setup for

our evaluation of ASwatch, where we evaluate the system’s
accuracy. Our results show that ASwatch achieves a high
detection rate for a reasonably low false positive rate, can
detect malicious ASes before they are publicly reported by
others, and can complement existing AS reputation systems
that rely solely on data-plane observations. Furthermore, we
find that ASwatch detects nearly double the fraction of con-
firmed cases of malicious ASes compared to BGP Ranking,
a data-plane based AS reputation system.

4.1 Data
Labeling malicious ASes. Collecting reliable ground truth
about malicious ASes is extremely challenging, due to the
utter lack of public information available about such cases.
Nonetheless, through extensive manual search and review
efforts, we managed to collect a set of ASes for which there
exists publicly available evidence of malicious behavior. For
example, we identified a reasonable set of malicious ASes
that were at some point seized by law enforcement or dis-
connected by other network operators.

To obtain our dataset of malicious ASes, we searched
through websites that are operated by cyber-security profes-
sionals (e.g., www.abuse.ch, blogs.rsa.com [1, 2, 10, 13, 16,

www.abuse.ch
blogs.rsa.com
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Smila, AS50390  
 

Figure 6: Malicious ASes we collected from blogs.

23]) and carefully reviewed articles about ASes known to be
operated by cyber-criminals.

We observed the following common characteristics across
all articles and blog reports we considered: (1) the re-
ported ASes hosted a variety of cyber-criminal activities
(e.g., botnet C&C hosting, malware domains, phishing),
(2) several ASes were associated with each other, either
directly (e.g., customer-provider relationship) or indirectly
(e.g., they shared the same upstream provider), (3) the op-
erators of these ASes were uncooperative and unresponsive
(e.g., would not respond to abuse complaints or attempts by
other AS operators to communicate with them), (4) some
ASes were prosecuted by law enforcement and taken down,
(5) many of these disappeared only for a relatively short time
before resurfacing. From each blog report, we extracted the
ASes involved and the dates when they were active. Overall,
we collected forty one known malicious ASes. We provide
our list of ASes in Figure 6.

Labeling legitimate ASes. To collect a set of legitimate
ASes, we proceeded as follows. Every day for one year,
we collected the list of top one million domain names from
alexa.com. For each of these domains, we calculated
the average daily ranking; we selected the domain names
that had an average ranking above 10,000. In other words,
we selected only those domains that were consistently very
popular. Finally, we mapped each domain name to its re-
solved IP addresses and mapped those IP addresses to the
AS that hosted them. Overall, we collected a total of 389
ASes, which we label as legitimate.

Although we cannot be absolutely certain that our label-
ing of legitimate ASes contains no noise, we rely on two
reasonable assumptions. First, we assume that websites that
are consistently popular are unlikely to be offering malicious
services. Intuitively, a malicious site that becomes highly
popular would also have a high number of victims, and
would rapidly attract attention for take-down. As a result, the
site would be quickly blocked or taken down and would thus
not remain consistently popular. Second, we assume that
the administrators of the most popular websites are unlikely
to host their services within malicious ASes. Intuitively, if
they relied on malicious ASes, they would risk damaging
their own reputation, not to mention extended downtimes if
the hosting ASes were taken down due to abuse complaints.

Finally, to ensure that our set of legitimate ASes consists
of ASes that are similar in size to the malicious ASes, we

keep only those legitimate ASes that have no customers, or
whose customers are all stub ASes.

AS rewiring and relationships data (CAIDA). To track
how malicious ASes change their connectivity, we use a pub-
licly available dataset that reports AS business relationships.
The dataset reports one snapshot of the AS graph per month,
from 1998 to 2013.

Luckie et al. [25] provide an AS graph built by inferring
business relationships among ASes, based on AS customer
cones. Although this dataset has its own limitations (see Sec-
tion 5), it provides a reasonably accurate view of AS rela-
tionships, allowing us to estimate our rewiring features that
we presented in Section 3.2.

BGP routing dynamics (Routeviews). To further capture
the control-plane behavior of malicious and legitimate ASes,
we monitored the BGP messages that originate from these
ASes using the Routeviews dataset. We use this dataset to
measure both the dynamics of BGP updates and the IP frag-
mentation and churn features.

4.2 Experiment Setup
In the following section, we describe the training and the

evaluation of our system. The training period extends from
January 2010 to March 2010, while the evaluation experi-
ments extend from January 2011 to December 2013.

Computing AS feature vectors. Given a period of time
(i.e., m contiguous epochs) over which we want to capture
the behavior of an AS, we construct the AS feature vector
as follows: (1) Rewiring activity: We compute the rewiring
features over the most recent k snapshots of the AS rela-
tionships dataset, prior to the period of interest. Our source
of AS relationships provides only one snapshot per month.
Given this limitation, we select a reasonable number of snap-
shots to capture the most recent rewiring activity of an AS.
For our experiments we set k = 4 (see Section 4.3 on param-
eter selection); (2) BGP routing activity: To compute BGP
routing dynamics features, IP address space fragmentation
and churn, we collect the BGP announcements and with-
drawals originating from the AS during the period of inter-
est. We note that BGP Routeviews offers a large number of
monitors. Our pilot experiments over a number of different
monitors indicated that changing the monitor selection did
not significantly affect the overall performance of our classi-
fier. Therefore, to compute our routing activity features, we
select one monitor and consistently use it, throughout all the
experiments.

Training the AS reputation model. Because our data is
derived from cases of malicious ASes publicly reported by
others, we rely on the report dates for an approximate period
of time when the ASes were likely to be actively used by the
attackers. For example, if an AS was reported as malicious
on a given day d, we assume the AS was operated by crim-
inals for at least a few months before d (in fact, it typically
takes time for security operators to detect, track, confirm,
and take down a malicious AS). For the purpose of comput-
ing our labeled feature vectors and training our system, we



selected a period of time with the highest concentration of
active malicious ASes. This period extends from January–
March 2010, during which we identified a total of 15 ac-
tive malicious ASes. Even though this period may appear
somewhat dated, it allows us to capture the agile behavior
of several known malicious ASes within one consistent time
frame, enabling a “clean” evaluation setup. Our evaluation
detects a large fraction of malicious ASes that we have ob-
served over a longer, more recent time period (2011–2013).
In the future, we plan to investigate more sources of ground
truth and identify additional periods of time that can be used
to train our model (see Section 5 for further discussion).

Performing cross-validation tests. During the three-month
training period mentioned above, we maintain a sliding win-
dow of fifteen contiguous days (epochs), sliding the window
one day at a time (i.e., two consecutive windows overlap by
14 days). For each sliding window, we compute the fea-
ture vector for each AS and we perform three-fold cross-
validation as follows: (1) We separate the ASes into three
subsets, using two subsets to train our reputation model, and
one for testing. (2) For each training subset, we balance
the two classes by oversampling from the underrepresented
class. After balancing, the number of feature vectors of the
two classes are equal. (3) We train the model using a Ran-
dom Forest classifier [6]. (4) Finally, we test all feature vec-
tors that belong to the third fold against the model, as we
described in Section 3.3. Cross-validation yields the scores
from the testing phase and the true label for each AS feature
vector. We plot the receiver operating characteristic (ROC),
which illustrates the performance of the classifier for differ-
ent values of the detection threshold. Because we perform
our testing once for each sliding window, we plot a similar
ROC for each sliding window. The results are reported in
Section 4.3.

Evaluating ASwatch across a nearly three-year period.
After the cross-validation experiments, we use our model
to test new ASes whose BGP behavior was observed out-
side the training period over nearly three years, from 2011 to
2013. We perform this evaluation for two reasons: a) to test
how well ASwatch performs to detect new malicious ASes
(outside of the training period), and b) to compare the per-
formance of ASwatch with other AS reputation systems (e.g.,
BGP Ranking) over an extended period of time. For each
(previously unseen) AS we want to test against ASwatch, we
classify it as malicious if it has multiple feature vectors that
are consistently assigned a “bad reputation” score (see Sec-
tion 3.3). The results are reported in Section 4.3.

4.3 Results
How accurate is ASwatch? Evaluation with cross-
validation: Figure 7 shows the detection and false posi-
tive rates for one cross-validation run. The detection rate
and false positives reported on the ROC correspond to the
fraction of malicious feature vectors that are correctly clas-
sified and legitimate feature vectors that are incorrectly clas-
sified, respectively. As shown by the ROC curve, ASwatch
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Figure 7: The cross-validation detection and false positive rates of
ASwatch.

can achieve a detection rate of 93.33% (correctly classify-
ing 14 out of 15 ASes as malicious), with a reasonably low
false positive rate of 5.25% (20 falsely detected ASes). In
practice, we believe this false positive rate is manageable,
as it represents 20 falsely detected ASes over a three-month
period, or one every few days. Although this false positive
rate is clearly too high to automate critical decisions such
as take-down efforts, ASwatch can still be used to signifi-
cantly narrow down the set of ASes for further investigation
considerably, and can thus help both law enforcement focus
their investigation efforts, and network administrators make
decisions on who to peer with or which abuse complaints to
prioritize.

Evaluation outside the training period, over nearly three
years: As described in Section 4.1, we use our model to
test new ASes observed after the training period, over nearly
three years, from 2011 to 2013. It is important to notice that,
from a control-plane point of view, malicious ASes may not
always be behaving maliciously across a three year period
of time. Our ground truth information does not allow us
to distinguish between the periods of activity and periods
of “dormancy”. Nonetheless, over time an AS operated by
cyber-criminals will likely behave in a noticeably different
way, compared to legitimate ASes, allowing us to detect it.
Figure 10 shows the cumulative true positive rate of detected
ASes over the testing period. At the end of this nearly three
years period, ASwatch reached a true positive rate of 72%
(21 out of 29 ASes correctly flagged as malicious).

To compute the false positives, for each month we count
the number of distinct ASes that were detected as malicious.
The false positives reach at most ten to fifteen ASes per
month, which we believe is a manageable number, because
these cases can be further reviewed by network operators
and law enforcement. For instance, the upstream providers
of an AS that is flagged as malicious by ASwatch may take a
closer look at its customer’s activities and time-to-response
for abuse complaints. Furthermore, the output of ASwatch
could be combined with the reputation score assigned by ex-
isting data-plane based AS reputation systems. The intuition
is that if an AS behaves maliciously both at the control plane
(as detected by ASwatch) and at the data plane (as detected
by existing reputation systems), it is more likely that the AS
is in fact operated by cyber-criminals.
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(a) Considering each feature family separately.
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(b) Excluding one feature family at a time.

Figure 8: Relative importance of different types of features.
The rewiring features contribute the most to the overall detection
rate; other features contribute to lower false positive rates.

How early can ASwatch detect malicious ASes before
they are widely noticed? We want to evaluate if ASwatch
can detect malicious ASes before they were reported by blog
articles. For each of the 14 malicious ASes that ASwatch
detected during the cross-validation experiments discussed
earlier, we took note of the day that ASwatch first detected
the malicious AS, and we measured the number of days be-
tween the time ASwatch detected the AS and the day the blog
story was published. About 85% of the detected malicious
ASes were detected by ASwatch 50 to 60 days before their
story became public.

Which features are the most important? We evaluate the
strength of each family of features that ASwatch uses. To un-
derstand which features are most important for ASwatch, we
evaluate each family’s contribution to the overall true and
false positive rates. In particular, we want to study the ef-
fect of each family of features on the detection of malicious
ASes, independently from the other families, and the effect
of each family on the false positives when those features
are excluded. To this end, we repeated the experiment de-
scribed previously by excluding one family of features at a
time. We repeated the experiment four times, once for each
family of features, and we calculated the overall detection
and false positive rates. Figure 8 shows the results of our
experiments, which suggest that the rewiring features are
very important, because excluding them significantly low-
ers the detection rate. The BGP dynamics and IP address
space churn and fragmentation features help reduce the false
positives slightly (the “Only Rewiring” ROC in Figure 8a is
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Figure 9: The detection and false positive rates for ASwatch, if we
vary the size of the sliding window. Our experiments show that the
performance is not greatly affected.

slightly shifted to the right). We followed a similar proce-
dure to identify which features are most important for each
family of features. Table 1 shows the most important fea-
tures for each family.

Is ASwatch sensitive to parameter tuning? As explained
in Sections 3.3.2, 4.2 we use the following parameters to
classify an AS as malicious: (1) feature window size: we
compute feature vectors for an AS for a window of m con-
secutive days (one feature vector per day), and we repeat the
feature computation over l consecutive sliding windows of
size m. (2) number of most recent snapshots of AS relation-
ships: we compute the rewiring features for an AS over the
k most recent snapshots.

To tune our parameters, we performed several pilot exper-
iments, rather than an exhaustive search over the entire pa-
rameter space. Our pilot experiments showed that ASwatch’s
performance is robust to both parameters m and l. Due to
space limitations, we only show our experiments for the pa-
rameter m. Figure 9 shows the performance for window
sizes of 5, 10, 15, and 20 days. Our results show that the
accuracy of ASwatch is not overly sensitive to the choice
of window size m. The ROC plots in Figure 9 show that
m = 15 gives a higher true positive rate with a reasonable
false positive rate. We therefore setm = 15. Using a similar
approach, we set l = 5. We classify an AS as malicious, if it
scores lower than the detection threshold over five consecu-
tive periods of 15 days.

After we have selected parameters m and l, we proceed to
set parameter k. Suppose that we want to compute the repu-
tation of an AS A, over period T . Then, parameter k is the
number of most recent AS relationship snapshots, prior to T ,
over which we compute the rewiring features for A (notice
that our AS relationships dataset consists of one snapshot
per month, as mentioned in Section 4.1). In other words,
k denotes “how much” history we consider, to capture the
rewiring behavior for A. Ideally, we want to accurately cap-
ture A’s rewiring behavior while using a small number of
snapshots. We performed experiments using different values
of k (i.e., 1, 2, 3, 4). We then selected k = 4, because further
increasing its value did not produce a significant increase in
classification accuracy.



4.4 Comparison to BGP Ranking
We now compare ASwatch with BGP Ranking. In con-

trast to ASwatch, BGP Ranking is an AS reputation system
based on data-plane features (e.g., observations of attack
traffic enabled by machines hosted within an AS). Clearly,
BGP Ranking is an AS reputation system that is designed
differently from ASwatch, because it aims to report ASes
that are most heavily abused by cyber-criminals, but not
necessarily operated by cyber-criminals. We compare the
two systems for two reasons: (1) to test how many of the
malicious ASes that are operated by cyber-criminals show
enough data-plane evidence of maliciousness and get de-
tected by existing data-plane based AS reputation systems;
and (2) to evaluate whether the control-plane based approach
can effectively complement data-plane based AS reputation
systems.

Results summary. We found that ASwatch detected 72%
of our set of malicious ASes over a three year period, and
BGP Ranking detected about 34%. Both systems reported
the same rate of false positives (on average 2.5% per month,
which is ten to fifteen ASes per month). Combining the two
systems we were able to detect only 14% of the malicious
ASes, but we were able to reduce the false positives to 0.08%
per month (12 ASes in total across the three year period).

BGP Ranking reports. BGP Ranking [5] has been mak-
ing its AS reputation scores publicly available since 2011,
along with a description of the approach used to compute
the scores. BGP Ranking currently has information for a to-
tal of 14k ASes, and they announce a daily list of the worst
100 ASes by reputation score. The BGP Ranking score has
a minimum value of 1 (which indicates that the AS hosts
benign activity) but no maximum value (the more malicious
traffic hosted by the AS, the higher the score).

Using our list of confirmed cases of malicious ASes (Sec-
tion 4.1), we checked which ASes are visible from BGP
Routeviews starting from 2011. We found a total of 29
ASes. We chose to check which ASes are active since Jan-
uary 2011, because this is the oldest date for which BGP
Ranking has data available. Then, we tracked these ASes
until November 2013, because the historic AS relationships
dataset from CAIDA has a gap from November 2013 to Au-
gust 2014. Therefore, we collected the historical scores for
each active known malicious AS from BGP Ranking, from
January 2011 until the end of 2013.

ASwatch setup. Using ASwatch, we generate the feature
vectors for each AS in our list, starting from January 2011
until November 2013. To generate the feature vectors, we
follow the same procedure as described in Section 3.3.2. We
train ASwatch as previously described (on training data col-
lected in 2010) and test the ASes observed from 2011 to
2013 against the model.

Comparing BGP Ranking with ASwatch. As mentioned
earlier, BGP Ranking is not a detection system per se, in
that it aims to report ASes that host a high concentration
of malicious activities, and does not focus on distinguish-
ing between abused ASes and ASes that are instead owned
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Figure 10: True positive rates for ASwatch and BGP Ranking. Ac-
cumulation of detected ASes over nearly three years.

and operated by cyber-criminals. Nonetheless, for the sake
of comparison it is possible to obtain a detection system by
setting a threshold on the score output by BGP Ranking.
BGP Ranking publishes the set of “worst” 100 ASes and
their scores, which are updated daily (to obtain the historic
scores for any other non-top-100 AS, one has to make ex-
plicit queries through the web portal). It also reports the av-
erage AS score per country or region, and ranks the countries
that host the ASes with the lowest reputation. The four top
(“worst”) countries are Russia, Ukraine, Hong Kong, and the
US. Using the above information we consider five distinct
detection thresholds as follows: (1) average score for ASes
in Russia (BGP Ranking Russia cut-off), (2) average score
for ASes in Ukraine (BGP Ranking Ukraine cut-off), (3) av-
erage score for Hong Kong (BGP Ranking Hong Kong cut-
off), and (4) average score for ASes in the US (BGP Ranking
US cut-off). We also set a threshold based on the average
score of the 100th worst AS (BGP Ranking top 100) col-
lected from the daily reports. Figure 10 shows the detection
results using these thresholds.

We then compared BGP Ranking’s detection with that of
ASwatch. Figure 10 shows the fraction of ASes that ASwatch
and BGP Ranking detected. We show the cumulative frac-
tion of detected ASes, from January 2011 to November
2013. At the end of the 35-month period, ASwatch detected
about 72% of the set of ASes we tracked, while BGP Rank-
ing detected about 34%. We found that 72% of the malicious
ASes were detected by monitoring their control-plane behav-
ior, but only 34% of the malicious ASes showed enough data-
plane activity to be detected by BGP Ranking. BGP Rank-
ing may have only limited visibility of malicious activities in
the data plane across the entire Internet, and thus may com-
pletely miss the malicious activities of certain ASes. Natu-
rally, it is challenging to deploy a large number of sensors
dedicated to detecting malicious network communications
over the entire Internet. On the other hand, ASwatch moni-
tors BGP behavior, and may therefore compensate the lim-
ited visibility of data-plane based approaches.

We also compared the false positive rates of BGP Rank-
ing and ASwatch. Our motivation is to see if the false pos-
itives are manageable within a reasonable period of time



(e.g.one month). We collected the ASwatch scores and the
BGP Ranking scores for our set of legitimate ASes (see Sec-
tion 4.1). For each system, we counted the number of le-
gitimate ASes that ASwatch detected per month. We found
that both systems produce only ten to fifteen false positives
per month on average over the total of 389 known legitimate
ASes in our dataset. As we have mentioned earlier, BGP
Ranking is designed differently from ASwatch. Although the
rate we calculated does not represent the actual false positive
rate for BGP ranking, it does provide an estimate of the false
positive that an operator would need to deal with, if BGP
Ranking were used to detect malicious ASes.

Combining control-plane with data-plane. Finally, we
evaluated how the two systems would perform if we used
them together. To this end, we label an AS as malicious if
it was reported by both systems, with each two report dates
to be at most six months apart from each other. For BGP
Ranking we used the BGP Ranking top 100 threshold. We
found that combining the two systems, we were able to de-
tect 14% of our malicious ASes. This means that of 14% of
the known malicious ASes exhibited both control plane and
data plane malicious behavior within six months. The frac-
tion of legitimate ASes that both systems detected as mali-
cious is only 3% (i.e., 12 ASes out of 389) for the whole
three year period (which is on average 0.08% per month).
Finally, five out of the 29 known malicious ASes that were
active in the three year observation period were missed by
both systems. For example, AS 49544 (Interactive 3D) and
AS 39858 (UninetMd, now Comstar Volga Arzamas) are
among the top worst ASes that both systems detected.

5. DISCUSSION
ASwatch reputation scores in practice. ASwatch may help
the work of network operators and security practitioners as
follows: (1) Prioritize traffic: knowing what ASes have sus-
picious (low reputation) control-plane behavior may help ad-
ministrators to appropriately handle traffic originating from
such ASes; (2) Peering decisions: Upstream providers could
use AS reputation scores as an additional source of infor-
mation to make peering decisions, for example by charging
higher costs to compensate for the risk of having a low rep-
utation customer or even de-peer early if reputation scores
drop significantly; (3) Prioritize investigations: law enforce-
ment and security practitioners may prioritize their investi-
gations and start early monitoring on low reputation ASes;
(4) Complement data-plane based systems: ASwatch could
be used in combination with data-plane based reputation sys-
tems, so that ASes that exhibit malicious behavior both from
the control-and data-plane points of view can be prioritized
first; (5) Strengthen existing defenses: furthermore, reputa-
tion could be used as input to other network defenses (e.g.,
spam filters, botnet detection systems) to improve their de-
tection accuracy.

Working with limited ground truth. We briefly summa-
rize the challenges that we faced due to limited ground truth,
and how we mitigated them. (1) Highly unbalanced dataset:

The ratio of malicious ASes to legitimate ASes produced a
highly unbalanced dataset. Before training we used well-
known data mining approaches to balance the dataset, by
oversampling the underrepresented class of malicious ASes
(Section 4.1). (2) Limited time period for training: We relied
on the date of the ground truth reports to estimate the period
of time in which the ASes were likely to be actively used by
the attackers. We were not able to obtain additional informa-
tion about the activity periods (or dormancy periods) outside
the report dates. Therefore, we designed AS ASwatch so that
it does not make a final decision for an AS based on a single
observation (i.e., a single feature vector). Instead, we intro-
duced parameters to ensure that we label an AS as malicious
only if it is assigned consistently low scores for an extended
period of time. (3) Model update with adaptive training:
Because of the lack of information on the activity periods
(or dormancy periods) outside the report dates, we were not
able to periodically update our model. Therefore, we per-
formed a one-time training on our model using a period of
time (January–March 2010) for which we had “clean” data.
Even though ASwatch uses observations of cases of mali-
cious ASes in 2010, we believe that it effectively models
fundamental characteristics of malicious ASes that are still
reflected on today’s cases. This belief is supported in part by
the results of correlating ASwatch’s output with recent BGP
Ranking reports (see Section 4). In our future work, we plan
to investigate more sources of ground truth and identify other
periods of time that could be included in our training.

Limitations of the AS relationships dataset. To measure
our rewiring features, we relied on a dataset that provides
snapshots of AS relationships over years (see Section 4.1).
The relationship inference algorithm is based on the idea of
customer cones—the set of ASes an AS can reach through
its customer links. This dataset has its own set of limitations.
For example, each pair of ASes is assigned only a single re-
lationship, and visibility is limited to the monitoring points
publicly available via Routeviews. It is possible that some
business relationships may be missing, or that some false re-
lationships are reported. Moreover, since the dataset is pro-
vided in snapshots (one snapshot per month), we are not able
to observe rewiring activity that may be happening at a finer
time scales. Nevertheless, this AS relationships dataset has
the largest validated collection of AS relationships gathered
to date, with about 44,000 (34.6%) of the inferences vali-
dated, and it reports the AS relationships over years, which
allowed us to track our ground truth ASes over an extended
period of time.

Evasion. Naturally, as for any other detection system,
ASwatch may face the challenge of sophisticated attackers
who attempt to evade it. For example, an attacker may at-
tempt to manage her AS to mimic the BGP behavior of legit-
imate ASes. However, we should notice that ASwatch relies
heavily on rewiring features, which capture how an AS con-
nects with other ASes, including upstream providers. Mim-
icking legitimate behavior to evade ASwatch would mean
that the malicious AS has to become “less agile". In turn,
being less agile may expose the AS to de-peering by its up-



stream providers as a consequence of accumulating abuse
complaints. For example, if McColo (which was taken down
in 2008) had not changed ten upstream providers before
it was taken down, it might have been taken down much
sooner.

Future work. We plan to expand our set of features to cap-
ture other types of behavior, such as making peering arrange-
ments for specific prefixes. We intend to expand our sources
of bullet-proof hosting ASes, so that we test ASwatch over
larger datasets and longer periods of time. We also plan to
explore how we may combine our set of control plane fea-
tures with data plane features.

6. RELATED WORK
We review studies of “unclean" ASes and existing AS rep-

utation systems, as well as applications of machine learning
and signal processing to detect BGP anomalies.

Studies of “unclean" ASes. Previous studies have at-
tempted to identify “unclean" ASes, which are ASes with
a high concentration of low reputation IP addresses. In con-
trast, we attempt to understand the behavior of ASes that
are controlled and managed by attackers, rather than ASes
which are heavily abused. Collins [9] first introduced the
term network uncleanliness as an indicator of the tendency
for hosts in a network to become compromised. They gath-
ered IP addresses from datasets of botnets, scan, phishing,
and spam attacks to study spatial and temporal properties of
network uncleanliness; this work found that compromised
hosts tend to cluster within unclean networks. Kalafut et al.
[18] collected data from popular blacklists, spam data, and
DNS domain resolutions. They found that a small fraction
of ASes have over 80% of their routable IP address space
blacklisted. Konte et al. [20] studied ASes that are reported
by Hostexploit and how they changed their upstream con-
nectivity. Johnson et al. introduced metrics for measuring
ISP badness [17]. Moura et al. studied Internet bad neigh-
borhoods aggregation. Earlier papers have looked into IP
addresses that host scam websites or part of spamming bot-
nets are organized intro infrastructures [8, 12, 38]. Finally,
Ramachandran et al. found that most spam originates from
a relatively small number of ASes, and also quantified the
extent to which spammers use short-lived BGP announce-
ments to send spam [29, 30]. These studies suggest that it is
possible to develop an AS reputation system based on analy-
sis of control-plane features, which is the focus of our work.

AS reputation systems. The state of the art in AS reputation
systems is to use features that are derived from data-plane in-
formation, such as statistics of attack traffic. Current systems
correlate data from multiple sources such as spam, malware,
malicious URLs, spam bots, botnet C&C servers, phishing
servers, exploit servers, cyber-warfare provided by other or-
ganizations or companies. Then, then rank ASes based on
the concentration of low reputations IP addresses. Orga-
nizations, such as Hostexploit [34], Sitevet [34], and BGP
Ranking [4] rate each AS with an index based on the activ-
ity of the AS weighted by the size of its allocated address

space. FIRE [36] examines datasets of IRC-based botnets,
HTdetection-based botnets, drive-by-download and phish-
ing hosts and scores ASes based on the longevity of the ma-
licious services they host and the concentration of bad IP
addresses that are actively involved. ASMATRA [37] at-
tempts to detecting ASes that provide upstream connectivity
for malicious ASes, without being malicious themselves.

Zhang et al. [39] find that there is a correlation between
networks that are mismanaged and networks that are respon-
sible for malicious activities. The authors use a mismanage-
ment metric to indicate which ASes may be likely to exhibit
malicious behaviors (e.g. spam, malware infections), which
does not necessarily indicate if an AS is actually operated
by cyber-criminals or not. In contrast, we focus on detect-
ing ASes that are operated by attackers, rather than ASes
that are mismanagement and likely abused. Also, [39] ex-
amined short-lived BGP announcements as an indication of
BGP misconfigurations. Even though we also examine the
duration of prefix announcements, this is only one of the fea-
tures we use to capture control plane behavior. Our analysis
shows that this feature alone is not enough to distinguish be-
tween legitimate and malicious ASes.

Roveta et al. [33] developed BURN, a visualization tool,
that displays ASes with malicious activity, with the purpose
to identify misbehaving networks. In contrast to these repu-
tation systems that rely on data-plane observations of mali-
cious activity from privileged vantage points, ASwatch es-
tablishes AS reputation using control-plane (i.e., routing)
features that can be observed without privileged vantage
points and often before an attack.

Machine learning and signal processing approaches.
These approaches detect BGP anomalies (e.g., burstiness),
with the goal to help system administrators diagnose prob-
lematic network behaviors, but they do not provide a connec-
tion between BGP anomalies and criminal activity. In con-
trast to these approaches, ASwatch attempts to capture suspi-
cious control-plane behavior (e.g., aggressive change of con-
nectivity, short BGP announcements) with the goal to detect
malicious ASes. Prakash et al. developed BGPlens, which
monitors anomalies by observing statistical anomalies in
BGP updates based on analysis of several features, including
self-similarity, power-law, and lognormal marginals [28].
Similarly, Mai [26], Zhang [40] and Al-Rousan [3] have
examined BGP update messages using tools based on self-
similarity and wavelets analysis hidden Markov models to
design anomaly detection mechanisms.

7. CONCLUSION
This paper presented ASwatch, the first system to derive

AS reputation based on control-plane behavior. ASwatch is
based on the intuition that malicious ASes exhibit “agile”
control-plane behavior (e.g., short-lived routes, aggressive
rewiring). We evaluated ASwatch on known malicious ASes
and found that it detected 93% of malicious ASes with a 5%
false positive rate. When comparing to BGP Ranking, the
current state-of-the-art AS reputation system, we found that
ASwatch detected 72% of reported malicious ASes, whereas



BGP ranking detected only 34%. These results suggest that
ASwatch can better help network operators and law enforce-
ment take swifter action against these ASes that continue
to remain sources of malicious activities. Possible remedia-
tions could be assessing the risk of peering with a particular
AS, prioritizing investigations, and complementing existing
defenses that incorporate other datasets.
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